
HW 8: TAC, x86 Code, Intro to Optimization CSCI 434T
Fall, 2011

Overview

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

This week, we dive into the compiler’s back end. The first readings focus on the run-time environ-
ment for your program, which describes how it executes machine code and how it manages the stack,
the heap, and other computer resources. This should hopefully be mostly a review of cs237 material.

We will discuss the particulars of the x86 environment in lab, in preparation for writing a basic x86
code generator for IC.

The last two readings introduces the topic of program optimization. They explore the goals, the
challenges, and the various forms of optimization. This week we focus on one simple optimization,
redundant expression elimination via value numbering. This is a local optimization that operates
only on small contiguous sequences of instructions. Next week, we will begin to explore a general
framework for describing many program analysis and optimizations in a unified at elegant way.

I would like to spend our time next week discussing Problems 1—2 and 6—8. We will
spend part of lab on Thursday going over code generation, which will help greatly with 3—
5, and we won’t work through the full solutions to those together unless there are specific
items that you have questions about. Those questions will be very helpful for thinking
through IC code generation though, so do spend some time on them.

Readings

• Dragon 7 – 7.2

• Code Generation Materials on web site

• Cooper and Torczon 8.1 – 8.4

• Dragon 8.1 – 8.3

• Dragon 8.4 – 8.5 (You may want to read Cooper and Torczon first, and use this to fill in any
remaining details.)

Exercises

1. This question asks you to design the tac package for your IC compiler, as outlined in the PA
3 handout. Please come to the tutorial meeting with a design detailed enough to discuss the
following items:

• The TAC instruction set for your compiler. Be able to justify your choice of instructions and
how they will be used.
• The top-level design of the tac package:

– What are the main classes, what will they do?
– How do you represent a TAC instruction?
– How do you represent TAC operands?

1

We will talk about this in our meetings, and the relevant details should appear in the compiler
write up when you submit the TAC generator.

2. Consider a switch statement with the following syntax:

switch(e) {
case v1: s1;
case v2: s2;
...
case vn: sn;
default: sd;

}

where e is an expressions, v1..n are constants, and s1..n and sd are statements. When the value of
e matches the constant vk, the program executes statement sk; if the program does not match any
case, it executes sd. The execution does not fall through to the next case. One way to implement
this construct in TAC is by testing each case sequentially. However, for constructs with a large
number of cases, this implementation can be slow (O(n) in n, the number of explicit cases).

(a) If the listed cases represent a dense set in some range of values [l, u], a better implementation
is to use a jump table containing case labels and have a single table lookup to figure out the
matching case. Give a precise description of the table contents and show a translation of the
switch statement to a low-level TAC that implements this approach. You may extend our
TAC language if necessary.

(b) The solution proposed above has the drawback that the jump table may be too large if the
set of case values is sparse. Describe at least two translation approaches that would permit
the program to find the matching case faster, on average, than sequential search, but which
use data structures with size linear in the number of cases in the switch.

(c) What complications do your approaches from (a) and (b) bring to the process of building the
internal representation for a program used during optimization (ie, Control Flow Graphs)?
How could you address them? A few sentences is sufficient.

(d) Explain why switch constructs are less frequent in object-oriented languages.

3. Here is a small IC program:

2

class A {
int x;
int y;
void m(int w, int z) {

int r = w / z + this.x * this.x;
{

int k = w + 1;
}

}
void main(string[] args) { }

}

class B extends A {
int z;
void n(string s) { }
void m(int g, int h) { }

}

class C extends B {
void m(int g, int h) { }
void p() { }

}

class D extends A {
string k;
void p() { }

}

Using Appel, Figure 14.3, as a model, show the object and dispatch vector layouts for the four
classes shown here. Include the object offsets for fields and dispatch vector indexes for methods.
Assume all data is stored as 64-bit values.
Also, lay out the stack frame for method A.m. Include in your diagram the stack pointer, frame
pointer, locations of parameters, this, and local variables. Also show where the TAC temporary
variables are stored, assuming that the TAC for this method is:

t1 = w / z
t2 = this.x
t3 = this.x
t3 = t2 * t3
t0 = t1 + t2
r = t0
t4 = w + 1
k = t4

4. The gcc compiler (configured to pass all arguments on the stack) has generated the following
x86 64 code for a method in an object-oriented language:

_f:
pushq %rbp
movq %rsp, %rbp
subq $8, %rsp
movq 32(%rbp), %rax
addq 24(%rbp), %rax
movq %rax, -8(%rbp)

.L2:
movq 16(%rbp), %rax

3

movq 16(%rbp), %rdx
movq 8(%rax), %rcx
movq 16(%rdx), %rax
cmpq %rax, %rcx
jge .L5
movq 16(%rbp), %rcx
movq 16(%rbp), %rdx
movq -8(%rbp), %rax
addq 8(%rdx), %rax
movq %rax, 8(%rcx)
jmp .L2

.L5:
movq 16(%rbp), %rax
movq (%rax), %rdx
addq $64, %rdx
pushq %rax
movq (%rdx), %rax
call *%rax
addq $8, %rsp
movq 16(%rbp), %rax
movq %rbp, %rsp
popq %rbp
ret

(a) Assuming that the stack grows downwards, draw the memory layout during the execution of
this method. The layout must contain all of the pieces of memory that the execution of this
method accesses.

(b) Show a possible input program that this code may have been generated from.
(c) Would it be safe to remove the instruction “addq $8, %rsp” at the end of the program?

Explain.

5. The translation from TAC to assembly code can be expressed as a function CG [] in much the
same was as the TAC translation function T [] was described last week. This function converts
one TAC instruction into one or more assembly instructions that implement the TAC operation.
In order to properly generate the assembly code, the code generation function will take an “aug-
mented TAC” in which each variable name has been annotated with its offset from the frame
pointer, each field access has been annotated with the offset at which the field is located in the
object, and so on. (You may wish to think about how your TAC instruction objects will access this
information when it is needed in your compiler.) Given these annotations, here is the translation
of the TAC add instruction:

CG [xa = sb + tc] ≡
movq b(%rbp), %rax
addq c(%rbp), %rax
movq %rax, a(%rbp)

Of course, we would translate differently if one or more operands to + were constants instead of
variables:

CG [xa = J + tc] ≡
movl $J, %rax
addl c(%rbp), %rax
movl %rax, a(%rbp)

CG [xa = J + K] ≡
movl $J, %rax
addl $K, %rax
movl %rax, a(%rbp)

4

Converting a sequence of TAC instructions s1; . . . ; sn is defined in the obvious way: CG [s1; . . . ; sn] ≡
CG [s1]; . . . ;CG [sn].

(a) Write the compilation function for the following cases. Be sure to use proper x86 instructions
and addressing modes!
• CG [sa = tb]
• CG [xa = sb/tc]

Hint: compile
int main() {

long x,y,z;
x = y/z;

}

with gcc -m64 -S and look at the resulting assembly code.
• CG [xa = (yb.f)c], where c is the object offset of field f.
• CG [xa[yc] = zb]

(b) Augment the TAC for A.m with the offset information and show the compilation of those
TAC instructions using CG []. (Note: This is tedious to do by hand — just do the first couple
of instructions so that you can think about and answer the next part of the question.)

(c) There will be some obvious inefficiencies in your translation. Identify some of them and dis-
cuss how your code generator might avoid them. A short list or a few sentences is sufficient.

6. Consider the following TAC code:

x = 2
y = 3
z = 11
L0:
T0 = x < 10
fjump T0 L1
T1 = x < y
fjump T1 L3
T2 = x + 1
x = T2
jump L2
L3:
T3 = y < 100
fjump T3 L2
T4 = y + 1
y = T4
jump L3
L2:
T5 = z + 3
z = T5
jump L0
L1:

(a) Build the basic blocks and control flow graph for this code.
(b) Identify the natural loops.

7. Consider the following two basic blocks:

5

a = b + c a = b + c
d = c e = c + c
e = c + d f = a + c
f = a + d g = b + e
g = b + e h = b + c
h = b + d

(a) Build a DAG for each block. (The Dragon book and Cooper and Torczon use different notation
for the DAGs. I suggest using the Dragon book form — it is a little more flexible.)

(b) Value number each block.
(c) Explain any differences in the redundancies found by these two techniques.
(d) At the end of each block, f and g have the same value. Why do the algorithms have difficulty

discovering this fact?

8. Dragon 8.5.6

6

