
HW 10: Dataflow Analysis Foundations CSCI 434T
Fall, 2011
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We continue to examine dataflow analysis and optimization. Last week, we saw several examples
of dataflow problems, and looked at how they could be used to optimize a program. We now take a step
back and develop a general framework in which to describe and reason about dataflow analysis. With
this framework, it is easier to reason about the correctness and precision of a particular analysis, and
to formulate new analyses. You will do both of these tasks in the following problems. The first question
picks on last week’s themes, in the context of IC TAC instructions; the next few cover the lattice theory
underlying dataflow analysis; and the last two ask you to design new dataflow analyses to compute
specific information about a program.

I’d like to get through 1–5, and at least start discussing 6 during our meetings. Writing the code
generator will take some time, so we may need to wrap up the last question the following week. Please
do spend a bit of time on it ahead of our meeting though.

Readings

• Dragon 9.3 – 9.5.2

• Dragon 9.5.3 – 9.5.5 (Optional. A more advanced analysis- have a look at problem 9.5.1 if you do
this reading.)

Exercises

1. This question covers a few more details of basic dataflow analysis problems, in the context of IC.

(a) Describe the e gen, e kill, def, and use sets for each of the following instructions:
• t = a[i]

• b[j] = s

• x = p.g

• o.f = y

• z = q.m(r)

(b) Optimize the TAC generated for the following code snippets. You are free to use any op-
timization we have talked about, but pay particular attention to common subexpression
elimination, copy propagation, and dead code elimination.

i.
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class A {
int f,g;
A moo(int z) { ... }
int f(A a) {
int v = a.f;
int w = a.g;
A b = a.moo(v);
b.f = w;
z = (a.f + b.f) * a.g;
return z;

}
}

int f(A a) {
v = a.f;
w = a.g;
b = a.moo(v)
b.f = w;
z = a.f;
t1 = b.f;
z = z + t1;
t2 = a.g;
z = z * t2;

}

ii.

void f(int[] b) {
int i,j,x;

...

x = b[i] + b[j];
b[j] = b[i] + b[j];
b[i] = b[i] + b[j];

}

t1 = b[i];
t2 = b[j];
x = t1 + t2;

t3 = b[i];
t4 = b[j];
t5 = t3 + t4;
b[j] = t5;

t6 = b[i];
t7 = b[j];
t8 = t6 + t7;
b[i] = t8;

2. Given P = {red,blue, yellow,purple, orange, green}, let us define the partial order v as follows:

red v purple
blue v purple

yellow v orange
red v orange

blue v green
yellow v green

p v p for all p ∈ P

(a) Draw the diagram (as in Dragon Figure 9.22) for P .
(b) Would we still have a partial order if I added purple v yellow? Why or why not? Would we

still have a partial order if I added purple v yellow and yellow v red? Why or why not?
(c) Now add two additional colors to P :

white v p where p ∈ {red,blue, yellow}
p v black where p ∈ {purple, orange, green}

i. The resulting structure is a semi-lattice. Draw it.
ii. Compute all lower bounds for {black,purple, orange}.

iii. Compute the greatest lower bound for {black,purple, orange}.
iv. Which of the following functions fi : P → P are monotone?

• f1(p) =
{

white if p ∈ {red,blue, yellow}
p otherwise
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• f2(p) =
{

yellow if p ∈ {red,blue, green}
p otherwise

• f3(p) =
{

orange if p contains the letter a
blue otherwise

3. (a) Draw the product of the following two lattices L and N :
A

B C

D

0

1

2

(b) Suppose V is the set of all subsequences of “moo” ({ moo, mo, oo, m, o, ε }) and let x ∧ y be
the longest common subsequence of x and y. Draw the lattice for V . Consider the function
f : V → V , where f(x) is x with all o’s removed. Is f distributive? Justify in one or two
sentences.

4. Dragon 9.3.3

5. Design an optimization to remove redundant run-time null pointer checks from IC programs.
For simplicity, you may assume that each basic block contains a single TAC instruction. Specifi-
cally:

(a) Design a dataflow analysis by describing the following:
• The direction D (forward/backward) of your analysis.
• The domain V of data flow values.
• The meet operation ∧. Describe the order ≤ induced on V by your meet operator.
• The set of transfer functions F , where fI ∈ F is the transfer function for TAC instruction

I. You only need to consider the following forms: x = y, x = new C(), check null x,
and x = null.

• v, the initial value for either OUT[ENTER] or IN[EXIT], depending on whether your
analysis is forward or backward.

You may wish to use Figure 9.21 as a guide.
(b) Is your framework monotone? Explain why. Is your framework distributive? Explain.
(c) Describe how to use the results of your dataflow analysis to optimize a program.
(d) Show the results of applying the analysis and optimization to the following:

y = new Object();
check null y;
z = w;
while (...) {

check null y;
check null z;

}
if (...) {

y = k;
check null y;
check null z;

}
check null y;
x = y;
check null x;

(e) In Dragon, page 629, the authors claim that for a lattice-theoretic partial order ≤:
• Any answer greater than IDEAL is incorrect.
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• Any answer smaller than or equal than IDEAL is conservative, i.e. safe.
Explain in one or two sentences why your analysis never yields incorrect results. Is your
analysis strictly conservative in the sense that it sometimes computes answers strictly smaller
than IDEAL? If not, explain why in one or two sentences. If it is strictly conservative, write
a short program for which your analysis computes a different value than IDEAL. What are
the consequences of being conservative in this case?

6. We want to design a dataflow analysis to compute ranges for integer variables in the program.
For this, we extend the set N of integer numbers with plus and minus infinity:

N∗ = N ∪ {+∞,−∞}

such that −∞ < n and n < +∞ for any integer number n. We then use a lattice over the set

L = {[l, u] | l, u ∈ N∗ and l ≤ u} ∪ {>}

(a) Explain what the element > represents and why we need it.
(b) Define the partial order and the meet operator ∧ for elements in this lattice (including >).
(c) Sketch the structure of the resulting lattice.
(d) Using this lattice to compute ranges of variables will fail. Explain why.
(e) To solve the problems from the last part, we define a lattice

L′ = {[l, u] | l, u ∈ {−∞,−1, 0, 1,+∞} and l ≤ u} ∪ {>}

(with the same partial order as before) and build a dataflow analysis that computes ranges
in L′. Show the transfer functions for assignments of constants x = n and arithmetic
operations x = y + z and x = y * z, where x, y, and z are program variables and n is
an integer constant.

(f) Using the revised lattice and your transfer function, show how the dataflow analysis works
for the following program:

x = 0;
while (...) {

y = x;
if (...) {

x = x+1;
} else {

y = y-1;
}

}

(g) Assuming programs consist only of the three kinds of statements shown above, does this
analysis always yield the same result as the Meet-Over-Paths solution? If yes, show why. If
not, show a counter-example program and indicate the MOP and dataflow solutions.

(h) This problem is an example of an analysis where it makes sense to propagate different
information along different out edges from a node. Suppose we extend our lattice as follows:

L′ = {[l, u] | l, u ∈ {−∞,−k, . . . ,−2,−1, 0, 1, 2, . . . , k,+∞} and l ≤ u} ∪ {>}

for some integer k. Give a suitable transfer function for each of the out edges of a comparison
x < n, and show that with this analysis we can derive bound [1, 11] for variable i in the
following example (assuming k > 10):

i = 0;
while (i < 10) {

i = i + 1;
}

Why are such bounds useful?
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