PA 1: IC Lexical Analysis CSClI 4347
due: 5pm, Friday, Sept. 21 Fall, 2007

Overview

In this programming assignment, you will implement the scanner for your IC compiler. The IC
language specification document is available on the course web page. You will build the scanner using
the JFlex lexical analyzer generator. Examples and documentation for this tool can be found on the
JFlex home page and from the course resources web page.

Implementation Details

You will implement the lexical analyzer using JFlex. You will also build a driver program for the
lexer, and a test suite. You are required to implement the following:

e class Token. The lexer returns an object of this class for each token. The Token class must
contain at least the following information:

- id, an integer identifier for the token;

- value, an arbitrary object holding the specific value of the token (e.g. the character string,
or the numeric value);

— line, the line number where the token occurs in the input file.

The numeric identifiers for all of the tokens must be placed in a file sym. java containing a class
sym with the following structure:

public class sym {
public static final int IDENTIFIER = O;
public static final int LESS_THAN = 1;
public static final int INTEGER = 2;

}

Note: in the next assignment, this file will be automatically generated by the parser generator
java_cup.

e lexer.flex specification. Compiling this specification with JFlex must produce the Lexer. java
file containing the lexical analyzer generator. The generated scanner will produce Token objects.

e class Compiler. This will be the main class of your compiler at the end of the semester. At this
point, this class is just a testbed for your lexer. It takes a filename as an argument, opens that
file, and breaks it into tokens by successively calling the next_token method of the generated
lexer. The code should print a representation of each token read from the file to the standard out-
put, one token per line. Your output must include the following information: the token identifier,
the value of the token (if any), and the line number for that token. At the command line, your
program must be invoked as follows:

java ic.Compiler <file.ic>

I have given you code in the ic.Compiler class to handle the optional command line argument

“-d”, as in:

java ic.Compiler -d <file.ic>
This option will turn on debugging messages generated by calls to ic.Util.debug(...). (See
the ic.Util javadoc and Compiler. java source code for more details.) If “~3” is not provided,
callsto ic.Util.debug(...) will have no effect.



e class LexicalError. Your lexer should also detect and report any lexical analysis errors it
may encounter. You must implement an exception class for lexical errors, which contains at
least the line number where the error occurred and an error message. Whenever the program
encounters a lexical error, the lexer must throw a LexicalError exception and the main method
must catch it and terminate the execution. Your program must always report the first lexical
error in the file.

I have provided a few utility methods in the ic.Uti1 class. You are free to use these methods in
your code.

Code Structure. All of the classes you write should be in or under the package ic, containing the
following:

e the class Compiler containing the main method;
e the ic.lex sub-package, containing the Lexer and sym classes;

e the ic.error sub-package, containing the LexicalError class.

Testing the lexer. You must test your lexer. You should develop a thorough test suite that tests all
legal tokens and as many lexical errors as you can think of. We will test your lexer against our own test
cases — including programs that are lexically correct, and also programs that contain lexical errors.

SVN and Eclipse. You are required to manage your group project with svn. This is a useful tool for
managing the concurrent code development by multiple persons. Such a tool will become more useful
in the following assignments, which will be significantly larger than this first assignment. You should
therefore use this assignment as a chance to set up your code production and testing process. You may
also consider the automation of this process using makefiles, shell scripts or other similar tools.

I also strongly recommend using the Eclipse IDE. Eclipse has integrated svn support, as well as
many other useful features such as code navigation, text completion, unit testing, and debugging. All
of these can significantly help increase your productivity in this project. To further encourage you to
use Eclipse, I will provide an Eclipse starter project for the project and we will spend some time during
lab this week setting things up in your accounts.

Submission

To simplify submission and grading, you will turn in your programs by just checking the final
versions of your code and supporting files into your svn repository by the deadline. (Please provide a
descriptive message, such as “pal submission”, when you commit the version you wish me to look at.)
I will check out that version for grading.

As in any other large program, much of the value in a compiler is in how easily it can be maintained.
For this reason, a high value will be placed here on both clarity and brevity — both in documentation
and code. Make sure your code structure is well-explained in your write-up and in your javadoc docu-
mentation. (See the readme. txt file for how to generate javadoc from your code.)

The files you are required to submit for this assignment are:

e A brief, clear, and concise document (no more than 1-2 pages) describing the your code structure
and testing strategy. Include a list of regular expressions for all the tokens that your lexer recog-
nizes. Make sure you mention any known bugs and other information that may be useful when
grading your assignment.

e All of your source code and test cases.
Your project directory should be organized as follows:

e readme.txt - a quick overview of how to build and run the project.



/ic - all of your source code.

/test - your test cases.

/tools - the JLex utility that you will use in the project. You should not modify this.

/doc - the generated javadoc documentation. You should not need to manually modify this.
/writeup - your project write up.

Makefile - make script to compile the file from the command line.



