
HW 4: Abstract Syntax Trees and Symbol
Tables

CSCI 434T
Fall, 2007

Overview

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

This week’s goal is to explore the internal data structures used by a compiler to organize and
manipulate a source program. These data structures are the core of a compiler, and developing a good
set of programming abstractions is essential for managing implementation complexity.

There are several specific topics for the week:

1. Building abstract syntax trees (ASTs) during parsing, and examining other intermediate repre-
sentations.

2. Implementing the Visitor Design Pattern to make AST manipulations simpler.

3. Developing a general structure for symbols information.

We will also breifly look at language features called multimethods and open classes, which enable
implementation strategies that exhibit a number of interesting benefits and drawbacks over standard
AST and Visitor patterns.

Readings

The readings are from a variety of sources. I have grouped them according to topic, roughly in the
order in which they will be most useful. Some parts are pretty light and fill in background material;
others are more directly related to the problems below.

• LR Parser Generators and Attribute Grammars.

– Java CUP manual. (online)
– Engineering a Compiler, Cooper and Torczon, Ch. 4.1–4.3. (mostly background material –

skim for the basic ideas. They will be recurring themes for us.)

• Intermediate Representations, Abstract Syntax Trees, Visitor Design Pattern.

– Engineering a Compiler, Cooper and Torczon, Ch. 5.1–5.4.
– Modern Compiler Implementation in Java, Appel, Ch. 4.
– Design Patterns, Gamma et al., 331–344. (optional, book in lab)

• Scoping and Symbol Tables.

– Engineering a Compiler, Cooper and Torczon, Ch. 5.7.

• Multi-Methods.

– “MultiJava: Modular Open Classes and Symmetric Multiple Dispatch for Java”, Clifton et
al., Conference on Object-Oriented Programming: Systems, Languages, and Architectures,
2000. Sections 1 – 3. (online)

– “Practical Predicate Dispatch,” Todd Millstein, Conference on Object-Oriented Programming:
Systems, Languages, and Architectures, 2004. (optional, online)

1

Exercises

1. This question explores how CUP and other LR parser generators enable one to embed semantic
actions in a grammar definition. Each production in a grammar can be associated with a semantic
action:

A ::= body1 {: semantic-action1 :}
| body2 {: semantic-action2 :}

. . .
| bodyk {: semantic-actionk :}
;

The semantic action i, which is just Java code, is executed whenever the parser reduces the body
of production i to the non-terminal A. The parser also associates an attribute value with each
terminal and non-terminal on the parsing stack. The name RESULT refers to the attribute for the
head (ie, A), and we can give names to the attributes for the symbols in the body of the production,
as seen below with the names e and val:

terminal Integer NUM;
terminal PLUS;

nonterminal Integer E;

precedence left PLUS;

E ::= E:e1 PLUS E:e2 {: RESULT = e1 + e2; :}
| NUM:val {: RESULT = val; :}
;

For each terminal and non-terminal, we declare the attribute type, if any. The scanner must
create the attribute values for terminals, as we did in PA 1. The semantic actions in the parser
synthesize the attribute values for non-terminals during parsing.
In the last ten years, there has been a major shift away from using semantic actions to perform
any sort of type checking or code generation inside a compiler. Instead, we simply use the seman-
tic actions to build an abstract syntax tree, and we use subsequent tree operations to perform
analysis. Thus, we could build an AST as follows:

terminal Integer NUM;
terminal PLUS;

nonterminal Expr E;

precedence left PLUS;

E ::= E:e1 PLUS E:e2 {: RESULT = new Add(e1, e2); :}
| NUM:val {: RESULT = new Number(val); :}
;

where we have the following AST node definitions:

class Expr {}

class Add extends Expr {

2

Expr left, right;
Add(Expr left, Expr right) { this.left = left; this.right = right; }

}

class Number extends Expr {
int val;
Number(int val) { this.val = val; }

}

(a) Extend the example CUP grammar above with the following:

terminal OPAREN, CPAREN, COMMA; /* ’(’, ’)’, and ’,’ */

nonterminal Vector<Expr> EList;
nonterminal Vector<Expr> ES;

EList ::= OPAREN ES CPAREN;
ES ::= ES COMMA E | E;

Add semantic actions to these new non-terminals so that the parser constructs a vector of
Expr objects when parsing input of the form “(4,1+7).”

(b) Describe the sequence of actions performed by the parser when parsing “(4,1+7).” Be sure
to describe the attributes for each symbol on the parsing stack each time a production for
ES is reduced, and draw the final attribute created for the EList You need not build the
parsing table, etc. Simply describe the actions at a high level (ie, “shift NUM onto stack, with
attribute value . . .”; “reduce . . . to . . ., popping off attribute values . . . and pushing attribute
value . . .”; and so on).

(c) The grammar above uses left recursion in the ES non-terminal. Lists like this could also be
written with right recursion, as in:

ES ::= E COMMA ES | E ;

Add semantic actions to these productions to produce the same result as above.
(d) It is often considered bad form to use right recursion in CUP grammars, if it can be avoided.

Why do you think left recursion is preferable to right recursion?

2. [Adapted from Cooper and Torczon]

• Show how the code fragment

if (c[i] != 0) {
a[i] = b[i] / c[i];

} else {
a[i] = b[i];

}

might be represented in an abstract syntax tree, in a control flow graph, and in quadruples
(or three-address code — the web page has a brief overview of TAC).

• Discuss the advantages of each representation.
• For what applications would one representation be preferable to the others?

3. This question explores the basic idea behind the Visitor pattern, as described in Appel, Chapter
4. (The Design Patterns book also discusses this pattern in detail, although Appel hits the most
important points.) Consider Programs 4.7 and 4.8 in Appel.

(a) Suppose we create the following expression e:

3

Expr i3 = new IntegerLiteral("3");
Expr i4 = new IntegerLiteral("4");
Expr i6 = new IntegerLiteral("6");
Expr i8 = new IntegerLiteral("8");
Expr e1 = new MinusExp(i3, i4);
Expr e2 = new TimesExp(e1, i6);
Expr e = new PlusExp(i8, e2);

If we create an Interpreter object interp and invoke

e.accept(interp);

what sequence of accept and visit calls will occur?
(b) What are the primary benefits of using a visitor pattern over a pattern like that found in

Program 4.5? What are the disadvantages?

4. The following grammar describes the language of regular expressions, with several unusual char-
acteristics described below:

R → R ′|′ R
| R ′.′ R

| R ′∗′

| R ′?′

| R ′+′

| ′(′ R ′)′

| letter
| ′[′ L ′]′

| ′let′ id ′=′ R ′in′ R

| id
| ε

L → L letter
| letter

The *, ?, and + operators have higher precedence than concatenation (’.’); and, in turn, concate-
nation has higher precedence than alternation. A letter can be any lower-case letter in ’a’–’z’.
The term ’[’ L ’]’ indicates an alternation between all of the letters in the letter list L. Here
are some examples:

• a.b+: a followed by one or more b’s.
• [abc]: any of a, b, or c
• a.(b|c)*: a followed by any number of b’s and c’s.
• a|@: either a or ε, which is represented by @.

In order to describe more interesting patterns succinctly, our language has “let”-bindings for id’s
(which are identifiers starting with capital letters), as in the following:

let C = (c.o.w)* in
C.m.C.m.C

which is the same as (c.o.w)*.m.(c.o.w)*.m.(c.o.w)*. Bindings can be nested, and one
binding can override an already bound name:

4

let C = c.o.w in
C.C.
let C = m.o.o in

C*

which is equivalent to c.o.w.c.o.w.(m.o.o)*.
The starter code for this problem includes a complete Flex specification and a skeletal CUP speci-
fication to scan and parse regular expressions, respectively. You are to design an AST package for
regular expressions and then write code to translate regular expressions into NFA descriptions
that can be executed on our NFA Simulator.

(a) The main method in re.Main currently reads a regular expression from its first argument.
It is executed from the command line as follows:

java -classpath .:tools/java-cup-11a.jar re.Main ex1.re

Before you can successfully parse expressions, however, you must complete the parser. Please
use the CUP precedence rules to do eliminate ambiguity — do not rewrite the grammar.

(b) Design a hierarchy of classes to represent regular expression ASTs. The root of your hierar-
chy should be the re.ast.RENode class that I have provided. You hierarchy should contain
a reasonable, minimal collection of classes. Not every concrete syntactic form needs to have
an analog in the abstract syntax (eg, “[L]” can be expressed as an alternation, etc.).
You AST hierarchy should support the visitor design pattern. More specifically, each node
class should define the following method from the RENode abstract class:

public void accept(Visitor visitor)

In addition, you should implement the appropriate Visitor interface that has a visit
method for each different type of node.
On some occasions, we will need to use a variation of the visitor that enables us to pass
information into and return information from the visit methods. To support this, you
should also define a PropogatingVisitor interface in which the visit methods take and
return extra values:

/**
* An interface for a propagating AST visitor.

* The visitor passes down objects of type DownType

* and propagates up objects of type UpType.

*/
interface PropogatingVisitor<DownType,UpType> {

UpType visit(REEmpty, DownType context);
UpType visit(..., DownType context);
...

}

The type parameters DownType and UpType describe the type of data passed into and out
of each visit method. To support propagating visitors, each RENode class will also need a
second accept method, which propagates the extra information through the traversal:

public <DownType, UpType> UpType accept(
PropagatingVisitor<DownType, UpType> visitor, DownType context)

(c) Extend the parser to generate an AST for the parsed regular expression.
(d) Complete the re.PrettyPrint visitor to print expressions represented by a RENode, and

extend the main method to print the parsed expression.

5

(e) Complete the re.NFABuilder propogating visitor to build a NFA for a regular expression
represented by a RENode. I have provided the re.NFA class to help in this step — your
visitor simply needs to create a new NFA object and invoke the appropriate methods on it to
create states and edges. See the online javadoc for details on the NFA class.
Think carefully about what information would be most useful to propagate down the tree
and back up during the traversal.
Your NFABuilder will need to mantain an environment to map id’s to their definitions and
it should generate a re.error.REError exception if you encounter an id that has not been
defined.

(f) Use the NFA.toString() to write the resulting NFA to a file, which can then be run with
the nfasim program that I have provided on the Unix machines. This alphabet for this
simulator is a–z, plus @ for ε.

If ex1.re contains the expression “a.(b|c)*”, your program should generate an NFA similar to
the following:

7
6
0 a:(1) ;
1 @:(2,3) ;
2 b:(4) ;
3 c:(5) ;
4 @:(6) ;
5 @:(6) ;
6 @:(1) ;

Running

nfasim ex1.nfa ab cow abccccc a

will then result in

ab: yes
cow: no
abccccc: yes
a: yes

Be sure to test your program on more sophisticated examples.
To help you debug the last two steps, the NFA class also contains a printDot() method that
generates the file “nfa.dot”. This is graphical representation of the NFA can be viewed by issuing
the following two commands from the command line:

dot -Tps < nfa.dot > nfa.ps
gv nfa.ps

Please turn in printouts of the following:

• A description of your Abstract Syntax Tree package and the PrettyPrint and NFABuilder
visitors that you wrote.
• All of your code.

5. [Adapted from Cooper and Torczon] You are writing a compiler for your favorite lexically-scoped
language. Suppose your compiler is given the following program as input:

6

1 procedure main
2 integer a,b,c;
3 procedure f1(integer w, integer x)
4 integer a;
5 call f2(w,x);
6 end;
7 procedure f2(integer y, integer z)
8 integer a;
9 procedure f3(integer m, integer n)
10 integer b;
11 c = a * b * m * n;
12 end;
13 call f3(c,z);
14 end;
15 ...
16 call f1(a,b);
17 end;

As in ML (which I’m sure you all remember oh-so-well from 334...), the scope of a nested procedure
declaration includes all declarations from the enclosing declarations.

(a) Draw the symbol table and its contents at line 11.
(b) What actions are required for symbol table management when the semantic analyzer enters

a new procedure and when it exits a procedure?
(c) The compiler must store information in the IR version of the program that allows it to easily

recover the relevant details about each name. In general, what are some of the relevant de-
tails for the variable and procedure names that you will need to perform semantic analysis,
optimization, and code generation? Cooper and Torczon discuss a number of alternatives as
to how this data is maintained in the symbol table and IR. What are they and what are the
benefits or potential costs of each? (Short bullet lists is fine for this question, but I hope to
discuss this topic in our meetings next week.)

(d) This part explores how to extend your symbol table scheme to handle the with statement
from Pascal. From the Pascal documentation:

The with statement serves to access the elements of a record or object or class, with-
out having to specify the name of the each time. The syntax for a with statement
is:

with variable-reference do
statement

The variable reference must be a variable of a record, object or class type. In the
with statement, any variable reference, or method reference is checked to see if it
is a field or method of the record or object or class. If so, then that field is accessed,
or that method is called. Given the declaration:

Type Passenger = Record
Name : String[30];
Flight : String[10];

end;

Var TheCustomer : Passenger;

The following statements are completely equivalent:
TheCustomer.Name := ’Michael’;
TheCustomer.Flight := ’PS901’;

and

7

With TheCustomer do
begin

Name := ’Michael’;
Flight := ’PS901’;

end;

In essence, the with statement is a shorthand to access a bunch of fields from a compound
structure without fully qualifying each name. Discuss in a few sentences how you would
augment the symbol table scheme you followed in parts (a) and (b) to support with. In
particular, what information would you store about each record type definition, and how
would you modify the symbol table when the semantic analyzer enters and exits a with
statement? What information do you attach to any symbol added to the table during these
operations?

6. The visitor pattern is just one way to implement AST-like data structures. A number of language
features not present in Java can impact how easy it is to write tree structures and operations on
them. For example, ML datatypes and pattern matching offer a different with their own set of
tradeoffs, and there are others as well.
Please read the first few sections of the MultiJava paper (Clifton et al., 2000) and consider the
following. You need not write more than a few sentences or sketch a few lines of code for each
part, but please think about the ideas a little.

• How could Open Classes be used in place of the Visitor pattern?
• How could Multimethods be used in place of the Visitor pattern?
• What are the advantages / disadvantages of these two approaches over the Visitor Pattern?

You may wish to illustrate the two alternative approaches by implementing a small example,
such as the one discussed in question 3. I have installed MultiJava on the Unix machines for you
to do this. It can be run with the mjc command. I will also put some sample code on the web
page.
You may also wish to read the “Practical Predicate Dispatch” paper, which takes dispatching to
the extreme. The first three or four sections are quite interesting from a language design point
of view.

8

