
Syllabus
Handout 1

CSCI 334: Spring, 2012

Principles of Programming Languages

Instructor Prof. Stephen Freund

Office TPL 302, 597-4260

Email freund@cs.williams.edu
Office Hours MW 2:30 – 4:00

TAs Antal Spector-Zabusky

Lectures TR 9:55–11:10 in TCL 206

Web Page http://www.cs.williams.edu/˜freund/cs334/index.html

Texts

We will be using the following text book:

• (Required) Concepts in Programming Languages, John C. Mitchell.

Additional readings will be posted on the web site.

Course Objectives

A programming language is a programmer’s principle interface to the computer. As such, the choice

of an appropriate language can make a large difference in a programmer’s productivity. A major goal

of this course is to present a comprehensive introduction to the principle features and overall design

of both traditional and modern programming languages. You will examine language features both in

isolation and in the context of more complete language descriptions. The material will enable you to:

1. Quickly learn programming languages, and how to apply them to effectively solve programming

problems.

2. Rigorously specify, analyze, and reason about the behavior of a software system using a formally

defined model of the system’s behavior.

3. Realize a precisely specified model by correctly implementing it as a program, set of program

components, or a programming language.

We will examine features of a large variety of languages, though we will not study many of lan-

guages themselves extensively. Like other CS courses, we will discuss alternate ways of solving prob-

lems, looking at the pros and cons. Because programming languages are so tied up (and motivated by)

programming problems, we will not only investigate language features, but also the software engineer-

ing problems that spawned them.

At the end of this course you will have a more thorough understanding of why certain program-

ming language features provide better support for the production of reliable programs, while others

are fraught with ambiguity or other problems. Since programming languages mediate between the

programmer and the raw machine, we will also gain a deeper understanding of how programming

languages are compiled, what actually happens when a program is executed on a computer, and how

the programming language design affects these issues. As an example, by the end of the course, you

should be able to understand why Java has replaced C++ language of choice for many projects and to

recognize where language design is likely to head in the future.

An important feature of this course is the discussion of programming language paradigms (in par-

ticular, languages supporting new ways of thinking about implementing algorithms). We will investi-

gate both the new features themselves and the software engineering problems which spawned these

developments.

1



This course will involve extensive reading on your part, both in the text and in outside sources. The

segments of the course that introduce new programming language paradigms will also feature some

programming in languages representative of the functional and object-oriented paradigms (Lisp, ML,

Scala, and possibly others).

Lectures

Lectures are mandatory. I expect you to attend and participate.

Tentative Schedule

This will undoubtedly change as we begin to explore these topics. Additional reading will be as-

signed from other sources. The web page will always contain an up-to-date list of topics and readings

for each lecture.

Week Date Topic

Week 0 2/1 Intro, Halting Problem

Week 1 2/7–2/9 Lisp and Functional Programming

Week 2 2/14–2/17 PL Foundations

Week 3 2/21–2/23 More Foundations and ML

Week 4 2/28–3/1 ML and types

Week 5 3/6–3/8 Stacks and Scope

Week 6 3/13–3/15 Control Flow, Exceptions

Week 7 4/3–4/5 Modularity, Abstraction, OOP

Week 8 4/10–4/12 OOP

Week 9 4/17–4/19 C++

Week 10 4/24–4/26 Java and Scala

Week 11 5/1–5/3 Security, Concurrency

Week 12 5/8–5/10 Concurrency

Homework

Problems involving analysis of programming language features will be assigned and due most

weeks during the term. Homework will generally be due on Tuesdays. Each student may use a max-

imum of three late days during the course of the semester. Once those late days are used up, late

homework will not be accepted. There will be midterm and final exams covering both lectures and

readings. The midterm will occur the week before Spring Break.

There will be small programming assignments as part of the homeworks. These will primarily

reinforce conceptual ideas from lecture and expose you to different programming paradigms. We will

use the Computer Science Department’s UNIX computers for the programming problems. If you are

not familiar with the UNIX computing environment, talk to me or the TA as soon as possible so we can

bring you up to speed on what you need to know.

Grades will be determined roughly as follows:

Midterm: 15–20%

Final Exam: 25–30%

Homework and programs: 40%

Other (class participation, attendance, quizzes, etc.): 10%

2



Honor Code

Homework is to be the sole work of each student unless the assignment explicitly states other-

wise. Students may collaborate or receive help from each other on an occasional basis as long as all

parties contributing or assisting are given explicit credit for their contributions to the homework. In

particular, I hope you will help each other in learning the mechanics of how to compile programs in

new languages. I will inform students if I believe they are collaborating too much. If in doubt as to

what is appropriate, ask me. Uncredited collaborations will be considered a violation of the honor

code and will be handled appropriately. The complete computer science honor code may be read at

http://www.cs.williams.edu/˜freund/honor.html .

3


