
1. (8 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . True or False
Mark each statement true or false, as appropriate.

(a) If evaluation of a Lisp expression does not terminate, its value is the
special symbol nil.

(b) In Lisp, the expressions (cons ’A ’B) and ’(A B) evaluate to equiv-
alent memory structures.

(c) All standard general-purpose programming languages are capable of
defining the same class of functions on the integers.

(d) In a standard compiler, type checking comes before parsing since this
avoids the unnecessary work of parsing expressions that do not type-
check.

(e) The variable x occurs bound in λy. (y ((λx. (z x))x)).

(f) In lambda calculus, confluence means that the expressions (M N) P
and M (N P ) eventually evaluate to the same normal form, possibly
by reduction paths of different length.

(g) If the ML typechecker rejects a program, this implies that running the
program would have produced a run-time type error.

(h) Callcc calls a function with the current continuation as argument.

2. (12 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminology
Define the following terms.

(a) (3 points) Run-time type error

(b) (3 points) Pure functional language

(c) (3 points) Access link

(d) (3 points) Exception handler
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3. (20 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-Assignment Languages
A number of so-called single-assignment languages have been developed over the years, many
designed for parallel scientific computing. Single assignment conditions are also used in
program optimization and in hardware description languages, which may allow only one
assignment to each variable per clock cycle.

One example single-assignment language is SISAL, which stands for Streams and Iteration
in a Single Assignment Language. Another is SAC, or Single-Assignment C. Programs in
single-assignment languages must satisfy the following condition:

Single-Assignment Condition: During any run of the program, each variable may
be assigned a value only once, within the scope of the variable.

The following program fragment satisfies this condition

if ( ... ) then x = 42+29/3 else x = 13.39;

since only one branch of the if-then-else will be executed on any run of the program. The pro-
gram x=2; loop forever; x=3 also satisfies the condition since no execution will complete
both assignments.

Single-assignment languages often have specialized loop constructs, since otherwise it would
be impossible to execute an assignment inside a loop body that gets executed more than once.
Here is one form, from SISAL:

for 〈range〉
〈optional body〉

returns 〈returns clause〉
end for

An example illustrating this form is the following loop, which computes the dot (or inner)
product of two vectors:

for i in 1, size
elt_prod := x[i] * y[i]

returns value of sum elt_prod
end for

This loop is parallelizable since different products x[i] ∗ y[i] can be computed in parallel. A
typical SISAL program is composed as a sequential outer loop containing a set of parallel
loops.

Suppose you have the job of building a parallelizing compiler for a single-assignment language.
Assume that the programs you compile satisfy the single-assignment condition and do not
contain any explicit process fork or other parallelizing instructions. Your implementation
must find parts of programs that can be safely executed in parallel, producing the same
output values as if the program was executed sequentially on a single processor.
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Assume for simplicity that every variable is assigned a value before the value of the variable
is used an in expression. Also ssume that there is no potential source of side effects in the
language you are compiler other than from assignment.

(a) (5 points) Explain how you might execute parts of the sample program

x = 5;
y = f(g(x),h(x));
if y==5 then z=g(x) else z=h(x);

in parallel. More specifically, assume that your implementation will schedule the follow-
ing processes in some way:

process 1 – set x to 5
process 2 – call g(x)
process 3 – call h(x)
process 4 – call f(g(x),h(x)) and set y to this value
process 5 – test y==5
process 6 – call g(x) and then set z=g(x)
process 7 – call h(x) and then set z=h(x)

For each process, list the processes that this process must wait for and list the processes
that can be executed in parallel with it. For simplicity, assume that a call cannot be
executed until the parameters have been evaluated and assume that processes 6 and
7 are not divided into smaller processes that execute the calls but do not assign to z.
Assume that parameter passing in the example code is by value.

(b) (3 points) If you further divide process 6 into two processes, one that calls g(x) and
one that assigns to z, and similarly divide process 7 into two processes, can you execute
the calls g(x) and h(x) in parallel? Could your compiler correctly eliminate these calls
from processes 6 and 7? Explain briefly.
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(c) (2 points) Would the parallel execution of processes you describe in parts (a) and (b), if
any, be correct if the program does not satisfy the single-assignment condition? Explain
briefly.

(d) (6 points) Is the single-assignment condition decidable? Specifically, given an program
written in a subset of C, for concreteness, is it possible for a compiler to decide whether
this program satisfies the single-assignment condition? Explain why or why not. If not,
can you think of a decidable condition that would imply single-assignment and allow
many useful programs to be written?

(e) (4 points) Suppose a single-assignment language has no side-effecting operations other
than assignment. Does this language pass the pure functional language test (also called
the declarative language test) discussed in class and in the reader? Explain why or why
not?
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4. (14 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lambda Calculus
This problem asks about the following ML code fragment, which can be translated into lambda
calculus:

(let fun currysubtract(a) = fn (b) =>
let fun negate(y) = ∼y
in

a + negate(b)
end

in
currysubtract 23

end) 19

Note that ML uses ∼ instead of − to represent unary negation of numbers.

The translation of this expression into lambda calculus is

(λcs. cs 23) (λa.(λb.((λn. a + (n b)) (λc.−c)))) 19

where currysubtract has been abbreviated cs and negate abbreviated to n.

(a) (7 points) Use leftmost β reduction with the above expression to arrive at a normal
form. Recall that leftmost reduction means that if two lambda evaluations are possible
at a given step, you should expand the one furthest to the left.

(λcs. cs 23) (λa.(λb.((λn. a + (n b)) (λc.−c)))) 19

=LMβ

=LMβ

=LMβ

=LMβ

=LMβ 23 +−19
= 4
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(b) (7 points) Use rightmost β reduction with the above expression to arrive at a normal
form. Recall that rightmost reduction means that if two lambda evaluations are possible
at a given step, you should expand the one furthest to the right.

(λcs. cs 23) (λa.(λb.((λn. a + (n b)) (λc.−c)))) 19

=RMβ

=RMβ

=RMβ

=RMβ

=RMβ 23 +−19
= 4

5. (12 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Type Inference
Use the parse graph below to calculate the ML type for the function:

λy.((λx.sq(x))y)

Where sq is a function sq: int → int.

Show your work on the parse graph.
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6. (14 points) . . . . . . . . . . . . . . . . . . . . . ML, Function Calls and Memory Management
This question asks about memory management in the evaluation of the following ML expres-
sions (with line numbers). This input consists of two declarations and an expression with a
declaration that is local to the expression. There are therefore three important scopes, the
one containing the first declaration of myop, the one following with the declaration of recurse,
and the scope containing the second declaration of myop that is local to the expression.

1 fun myop(x,y) = x*y;
2 fun recurse(n) =
3 if n=0 then 2
4 else myop(n, recurse(n-1));
5 let
6 fun myop(x,y) = x + y
7 in
8 recurse(1)
9 end;

(a) (8 points) Assume that expressions are evaluated using static scope. Fill in the missing
information in the following depiction of the run-time stack after the last call to myop,
caused by execution of line 4 of this code fragment. (At this point, a call to recurse(0)
has been made, it has returned and then its activation record has been popped off the
stack). Remember that function values are represented by closures, and that a closure
is a pair consisting of an environment (pointer to an activation record) and compiled
code. Remember also that in ML function arguments are evaluated before the function
is called.
In this drawing, a bullet (•) indicates that a pointer should be drawn from this slot
to the appropriate closure, compiled code or list cell. Since the pointers to activation
records cross and could become difficult to read, each activation record is numbered
at the far left. In each activation record, place the number of the activation record of
the statically enclosing scope in the slot labeled “access link” and the number of the
activation record of the dynamically enclosing scope in the slot labeled “control link.”
The first two are done for you. Also use activation record numbers for the environment
pointer part of each closure pair. Write the values of local variables, function parameters
and line numbers between the brackets, [ ], given in the diagram.
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Activation Records Closures Compiled Code

(1) access link ( 0 )
control link ( 0 )
myop •

(2) access link ( 1 ) 〈 (1) , • 〉 code for myop
control link ( 1 ) defined line [1]
recurse •

(3) access link (2)
control link (2) 〈 (2) , • 〉 code for recurse
myop •

(4) recurse(1) access link (2)
control link (3)
n [1] 〈 (3) , • 〉 code for myop

(5) myop(1,2) access link (1) defined line [6]
control link (4)
x [1]
y [2]

The arrows should be drawn from myop in record 1 to the first closure, from the first
closure to the code for myop defined in line 1, from the recurse in record 2 to the second
closure, from the second closure to the code for recurse, from myop in record 3 to the
third closure and from the third closure to the code for myop defined in line 6.

(b) (6 points)

i. (2 points) What is the value of this expression under static scope? Briefly explain
how your stack diagram from part (a) allows you to find which value of myop to use.

ii. (4 points) What would be the value if dynamic scope were used? Explain the
difference between this case and static scope by explaining how specific links in your
diagram will be used in each case.
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7. (20 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overlapping memory allocation
Fortran and Pascal have different features for giving space allocated to a program multiple
uses. A Fortran program can consist of separately compiled functions, called subroutines.
When functions are linked together to form an executable program, a static memory require-
ment for the program is determined (at least in all Fortrans used before 1980). This static
amount of memory is allocated to the program when the program is started and is neither
increased nor decreased as the program runs.

Fortran common blocks provide a mechanism for two separate subroutines to share memory
or use the same piece of memory differently. This example common statement

COMMON / ACOM / A(100,100), B(100,100), C(100,100)

places three arrays in a common block called ACOM. The space allocated for this common
block must include at least 3 ∗ 100 ∗ 100 locations, enough for three arrays with dimension
100 × 100. These are arrays of floating-point numbers, since the FORTRAN conventions is
that names A–H and O–Z are real; names beginning I–N are integer by default. The array
names are not part of the common block, so another subroutine could contain the common
statement

COMMON / ACOM / I(100,200), J(100,100)

and access the same space as two integer arrays. This makes the static space requirement of
the program less than if the two subroutines each declared their own arrays and did not place
them in common. If two Fortran subroutines do not have common statements naming the
same common block (such as ACOM here), then the memory allocated to the two subroutines
will be disjoint. There are no “global” variables in Fortran subroutines except those contained
in common blocks.

Pascal variant records provide another way of giving multiple names to a single memory
location. Here are some example type declarations, the second one a variant record.

type kind = (square, rectangle, circle);
type shape = record

center : point;
case k : kind of

square : (side : real);
rectangle : (length, height : real);
circle : (radius : real);

end;

Let us assume that a point requires 2 words (for two real coordinates) and a kind requires
one word. Then a shape is represented using 5 words. The first of these two words always
contain the center point of the shape and the third the value k specifying the kind of the
shape. If the shape is a square or circle, then only one of the last two words is used (for the
side or radius). If the shape is a rectangle, then all five words are used, two for the center
point, one for the kind, one for length and one for height.
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Here is an example function that computes the area of a shape. The with statement allows
record components to be accessed without using the dot (.) notation, and the case statement
is used to access the variant last two words of a shape record in different ways, depending on
the kind of the record.

function area( s : shape) : real;
begin

with s do
case k of

square: area := side * side;
rectangle : area := length * height;
circle : area := 3.1415926536 * radius * radius;

end
end;

It is also possible to declare variant record types without giving a record component that
distinguishes the types of variants. More specifically, if we declare shapes this way (with no
k:kind), then a shape is represented as four words, two for the center point and two for the
overlapping square, rectangle and circle parts.

type kind = (square, rectangle, circle);
type shape = record

center : point;
case kind of

square : (side : real);
rectangle : (length, height : real);
circle : (radius : real);

end;

It is possible to manipulate shapes declared this way simply by accessing all components
directly. For example,

var s : shape;
s.side := 4.52;
s.height := 27

will compile and run even though no shape has both side and height.
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Questions:

(a) (3 points) Consider a “representative” Fortran program consisting of several subrou-
tines that each declare and use several independent arrays. How much can the static
space requirement of the program be reduced by inserting COMMON statements? (This
may depend on the program, but make some reasonable assumptions.) Given what you
know about Fortran code and the era in which Fortran was popular, do you think this
is significant?

(b) (4 points) List one other reason why Fortran common blocks are useful (besides saving
space) and list one potential problem with Fortran common blocks.

(c) (3 points) Consider an example Pascal program using variant records to store geometric
information. How much space might be saved using Pascal variant records, in comparison
with records that have the same components but do not use variants to place more than
one component in a single location? Do you think this is significant?
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(d) (4 points) List one other reason why Pascal variant records are useful (besides sav-
ing space) and list one potential problem with the second (unchecked) form of variant
records.

(e) (3 points) Can you think of any advantages to having the unchecked variant records in
Pascal? Do you think it would be OK to have the first (safe) form only?

(f) (3 points) Do you think there is a practical way to make common blocks type safe?
What would be the disadvantage of doing this?
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