
Homework 7
Due 17 April

Handout 18
CSCI 334: Spring, 2012

Reading

1. (Required) Mitchell, Chapters 10–11

2. (Required) The Scala Tutorial, available on the CS334 Links page.

Problems

1. (15 points) . Smalltalk and Squeak Tutorial (Optional)
This question is optional, but using Squeak can be a pretty interesting experience if are curious.
Feel free to work with a partner on this question.
Go through the Smalltalk “BankAccount” tutorial from the handouts page on the Unix machines
in lab. This tutorial guides you through defining and using a simple class in Squeak, and it
should hopefully give you a feel for the designers’ vision.
The goal is to experience Squeak enough to appreciate of it is all about (and to have an opinion
about it).
A great deal more about Squeak can be found at http://www.squeak.org.
Here are few important details:

(a) To run Squeak, please follow these steps:
• Squeak needs to create and store a number of large files for you. To avoid filling up the

student disk containing your home directory, please use a directory on /home/scratch

for this problem. There is already a directory on that disk with the same name as your
Unix id. Change to that directory, as in:
cd /home/scratch/09abc

• In that directory, run the command
squeak

Once you run Squeak, it will store an “image” file in that directory. The image file
contains the environment’s code, plus any additions or modifications you have made to
it. As you go through the tutorial and before you exit, you should select “save” from the
“screen menu.” This will save any changes you made to the image on disk.

• You can run Squeak using your modified image in the future by going back to your
Squeak directory (ie, /home/scratch/09abc) and running the command squeak.

(b) Due to differences in the various Unix window managers installed in the lab, you may need
to:
• Use the middle mouse button when the tutorial refers to the right mouse button, and
• Use the right mouse button when the tutorial asks you to Alt-Click.

(c) If you prefer, you can download and install Squeak on a Mac and PC, using the instructions
on the Squeak website.

(d) (Include your answer to this part with your written answers) Reflect on your expe-
rience. Do you think Squeak is the right model for interacting with your computer? Why or
why not? A few sentences or short paragraph is sufficient. (Do this part individually.)

If you want to explore Smalltalk further, I highly recommend the “Morphic” tutorial at

1

http://static.squeak.org/tutorials/morphic-tutorial-1.html

It gives a nice introduction to how to extend and add graphical objects, etc. to the Squeak envi-
ronment. (The wiki http://http://wiki.squeak.org/squeak has many other resources you may
also find interesting/entertaining.)

2. (15 points) . Smalltalk Run-time Structures

Mitchell, Problem 11.4

The given conversions between Cartesian and polar coordinates work for any point (x, y), where
x ≥ 0 and y > 0. Do not worry about points where x < 0 or y ≤ 0. The figure P.11.4.1 appears in
page 332.
You should provide reasonable code for part (b), but you do not need to use Squeak, although you
may give it a try if you wish. A few details if you do:

• Put the classes in the “My-Stuff” category you made for the tutorial, and name the classes
MyPoint and MyPolarPoint to avoid conflicts with predefined classes.
• To add Class methods, click on the “class” button to the right of the “?” button in the System

Browser. Click on the “instance” button to switch back to instance methods.
• There is a missing . at the end of the line “x ← xCoordinate” in the book.
• Use sqrt and arcTan methods for the math operations.

3. (10 points) . Removing a Method

Mitchell, Problem 11.7

4. (15 points) . Protocol Conformance

Mitchell, Problem 11.6

(You will find it useful to answer Problem 11.7 first before working on this one.)

5. (10 points) . Subtyping and Binary Methods

Mitchell, Problem 11.8

6. (20 points) . How Many Calories in a Grand Slam?
The next few quesions ask you to implement several small programs in Scala. Start early — as
I’m sure you’ve learned this semester, new languages can be a little tricky to grasp...
You may work with a partner on the Scala programming questions.

Scala in Lab. The “scala” command on the Unix machines will give you a “read-eval-print” loop,
as in Lisp and ML. You can also compile and run a whole file as follows. Suppose file “A.scala”
contains:

2

object A {

def main(args : Array[String]) : Unit = {

println(args(0));

}

}

You can compile the program with “scalac A.scala”, and then run it (and provide command-line
arguments) with “scala A moo cow”.
Note: Scala is installed in the directory “/usr/local/scala-2.9.0.1/bin/”, which is not on your
default Unix search path. Thus, to run scala you should type in the full execution path, as in:

/usr/local/scala-2.9.0.1/bin/scalac A.scala

/usr/local/scala-2.9.0.1/bin/scala A moo cow

Alternatively, you may add the following line to the file .local bashrc in your home directory:

export PATH=${PATH}:/usr/local/scala-2.9.0.1/bin

so that the shell finds those commands without having to type in the full path. (If .local bashrc

does not exist, just make a new file with that name.) Please let Antal, me, or Mary know if you
have any trouble getting scala up and running.

Resources. I have left a number of Scala books on the bookshelf in the back corner of lab. You
may use them in lab, but please do not remove them the lab.
There is also plenty of very detailed information available online (e.g., http://www.scala-lang.org
— just web search for “Scala Language”). I suggest that you look at tutorial-style descriptions of
the features of interest as well as the Scala Language Specification for some of the specifics.
There is extensive online documentation for the Scala libraries at:

http://www.scala-lang.org/docu/files/api/index.html

In this first question, and in keeping with recent legislation to better advertise nutritional infor-
mation, we’ll use Scala answer a few questions about the Denny’s Restaurant menu...

(a) First, write a program to read in and print out the data in the file “dennys.txt” from the
handouts page. (I’ve also included a “dennys-short.txt” file that may be useful while debug-
ging.)
The program should be in a file called “Dennys.scala” that includes a single object definition.
Recall that objects are like classes, except that only a single instance is created.
One useful snippet of code is the following line.

val lines = scala.io.Source.fromFile("dennys.txt").getLines();

We will use this to read the file. Try this out in the Scala interpreter. What type does lines

have? For convenience in subsequent processing, it will be useful to convert line into a list:

val data = lines.toList;

Print out the list and verify you are successfully reading all the data. Use a for loop. For
loops in Scala follow a familiar syntax:

scala> for (i <- 1 to 3) println(i);

1

2

3

3

(b) Print the data again, using the foreach method on lists.
(c) The for construct lets you do many other things as well, such as selectively filtering out the

elements while iterating. For example:

scala> for (i <- 1 to 5 if i%2==0) println(i);

2

4

Use such a for list to print all menu items containing “slam” in the name. Make the test be
case insensitive. Scala Strings support all of the same string operations as Java Strings. A
few useful ones here and below:

def String {

def contains(str : String) : Bool

def startsWith(str : String) : Bool

def toLowerCase() : String

def toUpperCase() : String

// split breaks up a line into pieces separated by separator.

// For ex: "A,B,C".split(",") -> ["A", "B", "C"]

def split(separator : String) : Array[String]

}

(d) Now print all items containing “slam” but not “junior” or “senior” Multiple if clauses can be
chained together, as in “1 to 10 if i%2==0 if i%3==0”.

(e) Scala also supports lisp comprehensions:

val list = ... for (x <- list if ...) yield f(x);

Show an example of list comprehensions by computing something about the data with one.
(You may need to look this up in the documentation...)

(f) Next, define a new clss in “Dennys.scala” to store one menu item and its caloric value.

class Item(s : String) {

def name = ...

def calories = ...

override def toString() = {

...

}

}

It takes in a string of the form “calories:name” from the data file and provides the three
functions shown. For toString, you may find the code “"%5d ".format(n)” handy – it formats
the number n as a string and pads it to 5 characters.
Use a map operation on data to convert it from a list of strings to a list of Items. Print the
data and makes sure it works.

(g) Use a list comprehension to print all items with more than 1,000 calories.
(h) Use the sortWith method on Lists to sort the items by calorie. Also use foldLeft to sum the

calories if you were to eat “one of everything”.

class List[A] {

def sortWith (lt: (A, A) => Boolean) : List[A]

def foldLeft [B] (z: B)(f: (B, A) => B) : B

}

Note that foldLeft is a polymorphic method with type parameter B. In your case, both A and
B will be Int. Also, foldLeft is curried, so you must call it specially, as in:

4

val list : List[Int] = ...;

val n : Int = ...;

list.foldLeft (n) ((x: Int, elem: Int) => ...)

(i) Submit “Dennys.scala” with turnin.

7. (15 points) . Ahoy, World!
You’ll now learn to speak like a pirate, with the helps of Scala maps and a Translator class... The
program will take in an English sentence and convert it into pirate. For example, typing in

“pardon, where is the pub?”

gives you

“avast, whar be th’ Skull & Scuppers?”

The handouts page contains a “Pirate.scala” file to start with. You will be responsible for imple-
mentating a Translator class, reading in the priate dictionary, and processing the user input. It
will be easiest to proceed in the following steps:

(a) First, complete the Translator class. It has the following signature:

class Translator {

// Add the given translation from an english word to a pirate word

def += (english : String, pirate : String) : Unit

// Look up the given english word. If it is in the dictionary, return the

// pirate equivalent. Otherwise, just return english.

def apply(english : String) : String

// Print the dictionary to stdout

override def toString() : String

}

Note that we’re overloading the += and () operators for Translator. Thus, you use a Trans-
lator object as follows:

val pirate = new Translator();

pirate += ("hello", "ahoy");

..

val s = pirate("hello");

If “hello” is in the dictionary, its pirate-translation is returned. Otherwise, your translator
should return the word passed in. Any non-word should also just be returned. Thus:

pirate("hello") ==> "hello"

pirate("moo") ==> "moo"

pirate(".") ==> "."

When writing apply, use the get method on map and pattern matching to handle the Option

type it returns. (See class notes / tutorial for details on Option.
Finish the definition of Translator using a Scala map instance variable. To write toString,
you may find it handy to look at the mkString methods of the Scala Map classes.
Add a few lines to the Pirate main method to test your translator.

(b) Now, read in the full pirate dictionary from the “pirate.txt” data file, and print out the re-
sulting translator.

(c) Once you have the translator built, uncomment the lines in main that process standard input,
and process the text the user types in. There are a few sample sentences on the handouts
page. Here is an example:

5

Stephen-Freund:~/scala] cat sentence1.txt

pardon, where is the pub?

I’m off to the old buried treasure.

Stephen-Freund:~/scala] scala Pirate < sentence1.txt

avast, whar be th’ Skull & Scuppers?

I’m off to th’ barnacle-covered buried treasure.

(d) Submit “Pirate.scala” with turnin.

8. (30 points) . Argh, Expressions Matey
In Scala, algebraic datatypes can be defined with the use of abstract classes and case classes.
Consider the following algebraic data type for expressions:

sealed abstract class Expr

case class Variable(name: Symbol) extends Expr

case class Constant(x: Double) extends Expr

case class Sum(l: Expr, r: Expr) extends Expr

case class Product(l: Expr, r: Expr) extends Expr

case class Power(b: Expr, e: Expr) extends Expr

This Scala code is equivalent to the following definition in ML:

data Expr =

Variable of Symbol

| Constant of double

| Sum of Expr * Expr

| Product of Expr * Expr

| Power of Expr * Expr

Have a look at the starter code in “Expressions.scala” to see an example of Scala-style pattern
matching on case classes.

(a) Write a function that takes the derivative of an expression with respect to a given variable.
Your function should have the following signature:

def derive(e: Expr, s: Symbol): Expr

Your function does not have to take the derivative of Powers with non-constant exponents.
It is acceptable to throw an exception in that circumstance.
Note that in Scala, Symbols can be declared by using a single quote before the name of the
symbol, as such:

scala> ’x

res0: Symbol = ’x

scala> ’y

res1: Symbol = ’y

scala> ’abc

res2: Symbol = ’abc

(b) Write a function that evaluates a given expression in a given environment. An environment
is just a mapping from symbols to values for those symbols. Your function should have the
following signature:

def eval(e: Expr, env: Map[Symbol, Double]): Double

6

If a variable in the expression is not in the given environment, you should throw an excep-
tion.

(c) Write a function that when given an expression reduces that expression to its simplest form.
Your function should have the following signature:

def simplify(e: Expr): Expr

For example,

simplify(Sum(Variable(’x),Constant(0)))

should return Variable(’x). Your function need not be exhaustive – just implement four or
five interesting cases.

(d) Submit “Expressions.scala” with turnin.

Notes: In order to make the task of writing tests easier, we provide an expression parser. The
expression parser takes a string and returns its corresponding Expr. The expression parser can
be invoked on a string str like so: Expr(str). For example, to demonstrate that your simplifier
knows about the additive identity of zero, you might write the following test:

assertEquals(Expr("x"), simplify(Expr("x + 0")))

The syntax that the expression parser accepts can be expressed by the following grammar:

expr := sum

sum := product { ("+" | "-") product }

product := power { "*" power }

power := factor ["^" factor]

factor := "(" expr ")" | variable | constant

variable := ident constant := floatLit

floatLit := ["-"] positiveFloat

positiveFloat := numericLit ["." [numericLit]]

9. (15 points) Delegation-Based OO Languages (Bonus Question)

Mitchell, Problem 11.9

7

