
Homework 5
Due 15 March

Handout 11
CSCI 334: Spring, 2012

Reading

1. (Required) Read Mitchell, Chapters 6 and 7.

Problems

1. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parse Graph
Use the parse graph below to calculate the ML type for the function

fun f(g,h) = g(h) + 2;
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2. (15 points) . . . . . . . . . . . . . . . . . . . . . Type Inference to Detect Race Conditions
The general techniques from our type inference algorithm can be used to examine other program
properties as well. In this question, we look at a non-standard type inference algorithm to deter-
mine whether a concurrent program contains race conditions. Race conditions occur when two
threads access the same variable at the same time. Such situations lead to non-deterministic
behavior, and these bugs are very difficult to track down since they may not appear every time
the program is executed. For example, consider the following program, which has two threads
running in parallel:

Thread 1: Thread 2:

t1 := !hits; t2 := !hits;

hits := !t1 + 1; hits := !t2 + 1;
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Since the threads are running in parallel, the individual statements of Thread 1 and Thread
2 can be interleaved in many different ways, depending on exactly how quickly each thread is
allowed to execute. For example, the two statements from Thread 1 could be executed before the
two statements from Thread 2, giving us the following execution trace:

hits = 0
t1:=!hits
−−−−−→ hits = 0

hits:=!t1+1
−−−−−−→ hits = 1

t2:=!hits
−−−−−→ hits = 1

hits:=!t2+1
−−−−−−→ hits = 2

After all four statements execute, the hits counter is updated from zero to 2, as expected. Another
possible interleaving is the following:

hits = 0
t2:=!hits
−−−−−→ hits = 0

hits:=!t2+1
−−−−−−→ hits = 1

t1:=!hits
−−−−−→ hits = 1

hits:=!t1+1
−−−−−−→ hits = 2

This again adds 2 to hits in the end. However, look at the following trace:

hits = 0
t1:=!hits
−−−−−→ hits = 0

t2:=!hits
−−−−−→ hits = 0

hits:=!t1+1
−−−−−−→ hits = 1

hits:=!t2+1
−−−−−−→ hits = 1

This time, something bad happened. Although both threads updated hits, the final value is only
1. This is a race condition: the exact interleaving of statements from the two threads affected the
final result. Clearly, race conditions should be prevented since it makes ensuring the correctness
of programs very difficult. One way to avoid many race conditions is to protect shared variables
with mutual exclusion locks. A lock is an entity that can be held by only one thread at a time. If
a thread tries to acquire a lock while another thread is holding it, the thread will block and wait
until the other thread has released the lock. The blocked thread may acquire it and continue at
that point. The program above can be written to use lock l as follows:

Thread 1: Thread 2:

synchronized(l) { synchronized(l) {

t1 := !hits; t2 := !hits;

hits := !t1 + 1; hits := !t2 + 1;

} }

The statement “sychronized(l) { s }” aquires lock l, executes s, and then releases lock l. There
are only two possible interleavings for the program now:

hits = 0
t1:=!hits
−−−−−→ hits = 0

hits:=!t1+1
−−−−−−→ hits = 1

t2:=!hits
−−−−−→ hits = 1

hits:=!t2+1
−−−−−−→ hits = 2

and

hits = 0
t2:=!hits
−−−−−→ hits = 0

hits:=!t2+1
−−−−−−→ hits = 1

t1:=!hits
−−−−−→ hits = 1

hits:=!t1+1
−−−−−−→ hits = 2

All others are ruled out because only one thread can hold lock l at a time. Note that while we
use assignable variables inside the synchronized blocks, the names we use for locks are constant.
For example, the name l in the example program above always refers to the same lock.
Our analysis will check to make sure that locks are used to guard shared variables correctly. In
particular, our analysis checks the following property for a program P:

For any variable y used in P, there exists some lock l that is held by the current thread
every time y is accessed.

In other words, our analysis will verify that every access to a variable y will occur inside the
synchronized statement for some lock l. Checking this property usually uncovers many race
conditions.
Let’s start with a simple program containing only one thread:
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Thread 1:

synchronized (m) {

a := 3;

}

For this program, our analysis should infer that lock m protects variable a.
As with standard type inference, we proceed by labeling nodes in the parse tree, generating
constraints, and solving them.
Step 1: Label each node in the parse tree for the program with a variable. This variable repre-
sents the set of locks held by the thread every time execution reaches the statement represented
by that node of the tree. Note that these variables keep track of sets of locks names, and NOT
types, in this analysis.
Here is the labeled parse tree for the example:

m  : S2 :=  : S3

3  : S5

sync  : S1

a  : S4

Step 2: Generate the constraints using the following four rules:

(a) If S is the variable on the root of the tree, then S = ∅.
(b) For any subtree matching the form

e  : S

sync  : R

l  : T

we add two constraints:

T = R

S = R ∪ {l}

(c) For any subtree matching the form

e’  : S

ANY  : R

e  : T

where ANY matches any node other than a sync node, we add two constraints:

T = R

S = R
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(d) To determine locky, the lock guarding variable y, add the constraint

locky ∈ S

for each node y : S or !y : S in the tree. In other words, require that locky be in the set of
locks held at each location y is accessed.

Here are the constraints generated for the example program:

S1 = ∅ (rule 2a)
S2 = S1 (rule 2b)
S3 = S1 ∪ {m} (rule 2b)
S4 = S3 (rule 2c)
S5 = S3 (rule 2c)

locka ∈ S4 (rule 2d)

Step 3: Solve the constraints to determine the set of locks held at each program point and which
locks guard the variables:

S2 = S1 = ∅
S3 = S4 = S5 = {m}

locka ∈ {m}

Clearly, locka is m in this case, exactly as we expected.

You will now explore some aspects of this analysis:

(a) Here is another program and corresponding parse tree:

Thread 1:

synchronized (l) {

synchronized (m) {

a := 4;

b := !a;

}

b := 33;

}
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!a

l

sync

sync

m ;

a 4

;

:=

b

b 33

:=

:=

Compute locka and lockb using the algorithm above. Explain why the result of your algo-
rithm makes sense.

(b) Let’s go back to the original example, but change Thread 2 to use a different lock:

Thread 1: Thread 2:

synchronized(l) { synchronized(m) {

t1 := !hits; t2 := !hits;

hits := !t1 + 1; hits := !t2 + 1;

} }

Compute lockt1, lockt2, and lockhits using the algorithm above. Since there are two threads
in the program, you should create two parse trees, one for each thread. Explain the result of
your algorithm.

(c) Suppose that we allow assignments to lock variables. For example, in the following program,
l and m are references to locks, and we can change the locks to which those names refer with
an assignment statement:

Thread 1: Thread 2:

synchronized(!l) { synchronized(!m) {

a := !a + 1; x := !b + 3

} b := 11 + x;

m := !l; }

synchronized(!m) {

a := !b + 1;

b := !a;

}

Describe any problems that arise due to assignments to lock variables, and what the impli-
cations for the analysis are. You do not have to show the constraints from this example or
change the analysis to handle mutable lock variables. A coherent discussion of the issues
is sufficient. Thinking about what the algorithm would compute for locka, lockb, and lockx
may be useful, however.
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3. (15 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Folding Fun
The “fold-left” and “fold-right” functions appear in many languages (as reduceRight/Left in
Javascript, as accumulate in C++, as foldl/foldr in ML, and so on.)
Here are their definitions in ML:

fun foldr f v nil = v

| foldr f v (x::xs) = f (x, foldr f v xs);

fun foldl f v nil = v

| foldl f v (x::xs) = foldl f f(x, v) xs;

Thus, foldr g b [a0, ..., an] computes

g(a0, g(a1, g(a2, ... g(an, b) ... )))

and foldl g b [a0, ..., an] computes

g(an, g(an−1, g(an−2, ..., g(a0, b) ... )))

The “fold-right” function reduces the elements in a list to a single value by repeated application
of g, starting at the right of the list and working to the left. The “fold-left” function starts from
the left and works to the right.
Here is an example usage, which defines a function sum that adds together the numbers in a list:

- fun add(x,y) = x+y;

- fun sum elems = foldr add 0 elems;

- sum [2,3,4];

val it = 9: int

In effect, sum [2,3,4] computes

add(2, add(3, add(4, 0)))

We could also define sum using foldl:

- fun sum2 elems = foldl add 0 elems;

in which case sum2 [2,3,4] computes

add(4, add(3, add(2, 0)))

Of course, we typically combine folding with anonymous functions, as in the following definition
of sum:

- fun sum elems = foldr (fn (x,result) => (x+result)) 0 elems;

The type of both foldr and foldl is

(’c * ’d -> ’d) -> ’d -> ’c list -> ’d

That is, it takes as parameters a reducing function, an initial value, and a list. It produces a
single summary value.

(a) Can we always use foldl in place of foldr? If yes, explain. If no, give an example function
f, list l, and initial value v such that foldr f v l and foldl f v l behave differently.
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(b) Using a fold operation, write a function words length: string list -> int. This function
should return the total length of all words appearing in a list of strings. For example:

- words_length nil;

val it = 0 : int

- words_length ["Three", "Short", "Words"];

val it = 15 : int

(c) Using a fold, write a function count: ’’a -> ’’a list -> int. It computes the number of
times a value appears in a list. For example:

- count "sheep" ["cow", "sheep", "sheep", "goat"];

val it = 2 : int

- count 4 [1,2,3,4,1,2,3,4,1,2,3,4];

val it = 3 : int

(d) Using a fold, write a function poly: real list -> (real -> real) that takes a list of reals
[a0, a1, ..., an−1] and returns a function that takes an argument b and evaluates the
polynomial

a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

at x = b; that is, it computes
∑n−1

i=0 aibi. For example,

- val g = poly [1.0, 2.0];

val it = fn: real -> real

- g(3.0);

val it = 7.0: real

- val g = poly [1.0, 2.0, 3.0];

val it = fn: real -> real

- g(2.0);

val it = 17.0: real

(Hint: a0 + a1x + a2x
2 + a3x

3 = a0 + x(a1 + x(a2 + xa3)). This is an example of Horner’s
Rule. Horner’s Rule demonstrates that we can evaluate a degree n polynomial with only
O(n) multiplies.)

(e) Folds over lists are one specific example of what’s called a “catamorphism,” which generalizes
transformations between datatypes. (You may also encounter catamorphisms in an abstract
algebra class...) Here is a polymorphic tree definition and foldTree operation that perfroms
a “fold-like” transformation on a tree:

datatype (’a, ’c) Tree = Leaf of ’a

| Node of ’c * (’a, ’c) Tree * (’a, ’c) Tree;

fun foldTree (leafFn, nodeFn) (Leaf v) = leafFn(v)

| foldTree (leafFn, nodeFn) (Node (c, left,right)) =

let val leftValue = foldTree(leafFn, nodeFn) left;

val rightValue = foldTree(leafFn, nodeFn) right

in

nodeFn(c, leftValue, rightValue)

end;

The tree stores ’a values on the leaves and ’c values on the internal nodes. The foldTree

operation applies the function leafFn to each leaf and the nodeFn to each internal node and
the result of folding each subtree. Thus, to apply fold to a tree, you provide two functions
describing: 1) what to do to a leaf, and 2) what to do to an interior node. As a specific
example, given

val e = Node(w1, Node(w2, Leaf v1, Leaf v2), Leaf v3);

the expression foldTree (f,g) e computes:
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g(w1, g (w2, f(v1), f(v2)), f(v3)).

Using foldTree:
• Write a function treeDepth: (’a,’b) Tree -> int. It should have the following form:

fun treeDepth tree = foldTree (..., ...) tree;

where each ... is replaced by a lambda function or helper function that you define.
• Write a function treeEval: ExprTree -> int that evaluates an expression tree where

the leaves store ints and the nodes are Ops, defined below:

datatype Op = PLUS | MULT;

type ExprTree = (int, Op) Tree;

fun treeEval (tree : ExprTree) = foldTree(..., ...) tree;

With these definitions, we have:

- treeEval Node(PLUS, Leaf 3, Node(MULT, Leaf 4, Leaf 5));

val it = 23 : int

4. (15 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ada Parameter Modes
The Ada programming language permits parameters to be labeled as in, out, or in out, as in the
following procedure definitions, where T is some type:

procedure test1(in x: T) is begin ... end

procedure test2(out x: T) is begin ... end

procedure test3(in out x: T) is begin ... end

The modifiers, or modes, have the following meaning:

• in: The value of the parameter x cannot be changed inside the procedure. If we call test1(y),
the value of y is the same before and after the call..

• out: The parameter x can be written to, but it cannot be read. If we call test2(y), the value
of y after the call is the last value written to x in the procedure.

• in out: The parameter x can be both read and written, and the value of y after a call to
test3(y) is the last value written to x in the procedure.

The language definition does not specify how each mode should be implemented, and the compiler
may use any appropriate parameter passing mechanism to implement them.

(a) Which parameter passing mechanism could be used to implement test1, test2, and test3?
The choices are pass-by-reference, pass-by-value, and pass-by-value-result (as described in
problem 7.6). If more than one is possible, describe the advantages/disadvantages of each.

(b) Consider the following procedure that takes two parameters. Does the following program
print the same value for all strategies you outlined for in out parameters above?

procedure incTwo(in out x:integer, in out y:integer) is

begin

x := x + 1;

y := y + 1;

end

procedure main() is
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w : integer = 3;

begin

incTwo(w,w);

print w;

end

(c) Discuss the advantages and disadvantages of permitting the compiler such flexibility in how
it implements parameter modes.

5. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Static and Dynamic Scope

Mitchell, Problem 7.8

6. (15 points) . . . . . . . . . . . . . . . . . . . . . Function Calls and Memory Management

Mitchell, Problem 7.12

7. (15 points) . . . . . . . . . . . . . . . . . Function Returns and Memory Management

Mitchell, Problem 7.13
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