
1

59

Scope and Memory Management
(part 2)

CSCI 334
Stephen Freund

60

Accessing Globals

cow …
control link

val m = 5;

 fun force(a) = m * a;

 fun cow(y) =
 let m = y * y in
 force(m)
 end;

 cow(10);

m 5
control link

m 100
y 10
control link cow(10)

a 100
control link force(100)

force …
control link

Dynamic Scope:
follow control links

61

Accessing Globals

cow …
control link

val m = 5;

 fun force(a) = m * a;

 fun cow(y) =
 let m = y * y in
 force(m)
 end;

 cow(10);

m 5
control link

m 100
y 10
control link cow(10)

a 100
control link force(100)

force …
control link

Static Scope:
how to find m? # links to follow? 62

Accessing Globals

cow …
control link

val m = 5;

 fun force(a) = m * a;

 fun cow(y) =
 let m = y * y in
 force(m)
 end;

 fun moo(y) =
 cow(y);

 moo(10);

m 5
control link

m 100
y 10
control link cow(10)

a 100
control link force(100)

force …
control link

Static Scope:
Now how many???

moo …
control link

moo …
control link moo(10)

Even Worse...
val m = 5;

 fun force(a) = m * a;

 fun cow(y) =
 let m = y * y in
 force(m)
 end;

 fun moo(0) = 0
 | moo(n) =

 moo(n-1) + cow(n);

 moo(10);

cow …
control link

m 81
y 9
control link cow(10)

a 81
control link

force(100)

moo …
control link

n 10
control link moo(10)

n 9
control link moo(9)

m 5
control link

64

Accessing Globals

m 5

control link
access link

force …

control link
access link

cow …

control link
access link

m 100
y 10

control link
access link

cow(10)

a 100

control link
access link

force(100) Static Scope:
follow access links

val m = 5;

 fun force(a) = m * a;

 fun cow(y) =
 let m = y * y in
 force(m)
 end;

 cow(10);

2

65

Activation record for static scope
 Control link

link to activation record of
previous (calling) block

 Access link
link to activation record of

closest enclosing block in
program text

 Difference
Control link depends on

dynamic behavior of prog
Access link depends on

static form of program
text

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

Access link

66

Passing Functions to Functions
val cm = 2.54;
fun toCM(y) = cm * y;
fun map(h,nil) = nil
 | map(h,x::xs) =
 h(x)::map(h,xs);

map(toCM,[1.0,2.0]);

cm 2.54
access link

toCM
access link

code for
toCM

map
access link

code for
map

y 1.0
access link toCM(1.0)

??? x 1.0
h
access link map(toCM,[1.0,2.0])

xs [2.0]

67

Function Values are Closures
 closure = 〈env, code〉

–  env is pointer to activation record for scope in
which function is declared

–  code is pointer to start of instructions

 When function is called:
 set the access link using the environment
 pointer from the closure

toCM
access link code for

toCM

68

Closures
cm 2.54
access link

map
access link

code for
map

x 1.0
h
access link map(toCM,[1.0,2.0])

xs ...

y 1
access link toCM(1)

val cm = 2.54;
fun toCM(y) = cm * y;
fun map(h,nil) = nil
 | map(h,x::xs) =
 h(x)::map(h,xs);

map(toCM,[1.0,2.0]);

toCM
access link

code for
toCM

69

Summary of Function Arguments
 Closure maintains pointer to static

environment of a function body

 When called, access link set from closure

 All access links point "up" in the stack
–  can still deallocate activation records in lifo

order

70

makeRand
fun makeRand(seed1, seed2) =
 let val generator = Random.rand(seed1,seed2)
 in
 fn (x,y) =>
 Random.randRange(x,y)(generator)
 end;

3

71

Returning Functions From Functions
fun make(seed) =
 let val count = ref seed;
 fun next(max) =
 (count := !count + 1;
 !count mod max)
 in
 next
 end;

val gen = make(0);
gen(5) -> returns 1
gen(3) -> returns 2
gen(2) -> returns 1 72

Returning Functions From Functions

fun make(seed) =
 let val count = ref seed;
 fun next(max) =
 (count := !count + 1;
 !count mod max)
 in
 next
 end;

val gen = make(0);
gen(5) + gen(4);

count is
global var
in next

73

fun make(seed) =
 let val count = ref seed;
 fun next(max) =
 (count := !count + 1;
 !count mod max)
 in
 next
 end;

val gen = make(0);
gen(5) + gen(4);

Function Results and Closures

code for make

make
access link

gen
access link

access link

next
seed 0

count make(0)

code for next

0

74

fun make(seed) =
 let val count = ref seed;
 fun next(max) =
 (count := !count + 1;
 !count mod max)
 in
 next
 end;

val gen = make(0);
gen(5) + gen(4);

Function Results and Closures

code for make

make
access link

gen
access link code for next

Deallocating AR is bad...

75

make
access link

gen
access link

code for make

fun make(seed) =
 let val count = ref seed;
 fun next(max) =
 (count := !count + 1;
 !count mod max)
 in
 next
 end;

val gen = make(0);
gen(5) + gen(4);

max 5
access link gen(5)

code for next

access link

next
seed 0

0

count

0
(Right before executing
 “count := !count+1” in gen(5)....) 76

Summary of Returning Functions
 Closure maintains static environment
 May need to keep activation records after return

–  Stack (lifo) order fails!
 Possible “stack” implementation

–  Forget about explicit deallocation
–  Put activation records on heap
–  Invoke garbage collector as needed
–  Not as totally crazy as it sounds...

