ML

CSCI 334
Stephen Freund

Language Sequence

Algol 60
Algol 68

Many other languages:
Algol 58, Algol W, Euclid, EL1, Mesa (PARC), ...
Modula-2, Oberon, Modula-3 (DEC) 2

Algol 60 Sample

real procedure average(A,n);
real array A; integer n;

begin
real sum;
sum = 0;

fori=1step 1untilndo
sum := sum + A[i];
average := sum/n
end;

ML

* Combination of Lisp and Algol-like features
- Expression-oriented
- Higher-order functions
- Garbage collection

- Static types

- Abstract data types
- Module system

- Exceptions

* General purpose non-C-like, hon-OO language

Goals in study of ML

* Types and type checking

- Static vs. dynamic typing

- Type inference

- Polymorphism and Generic Programming
* Memory management

- Static scope and block structure

- parameter passing

- Function activation records, higher-order functions
e Control

- Statements, { blocks }, ...

- Exceptions

- Tail recursion

Robin Milner and ML's Origins

¢ Dana Scott, 1969
- LCF
- logic for stating theorems
about programs
* Robin Milner
- automated theorem proving
for LCF
- theorem proving is a hard
search problem
- ML: meta-language for
writing programs (tactics) to
find proofs




Tactics

* Tactics guide search in theorem prover

* Tactic is partial function from formula -> proof
- finds proof
- never terminates
- reports an error

Language Ideas to Support Tactics

* Type system
- guarantees correctness of generated proof

* Exception handling
- deals with tactics that fail (Turing Award)

* higher-order functions
- composition of tactics
- fun compose(t1, t2) =
Aformula. if t1(formula) then ...
else if t2(formula) ...

A Recent Implementation...

‘The SMLNET compiler

[« - e ][+ ][] % hup:/jwww.cl.cam ac.ukresearchtsg/SMNET/ ~Q- sMLNET
[0 01267 NYT photov poker-chart. 1198 pixels Lindenmayer MathWorld _Efros and Le. e Synthesi ings =
1 swwer compier — ]

Home

Licence
Documentation
Samples
Research

sml.net

Functional programming on the .NET CLR

Mailing list
Credits

Theory and Semantics Group

Computer Laboratory

———— SML.NET is a compiler for the functional programming language Standard ML that
Pages maintained by targets the .NET Common Language Runtime and which supports language

Alisdair Wren interoperability features for easy access to .NET libraries.

Last updated 02-June-06.
This web site was last updated on 02-June-06.

Download
SML.NET is available for in either binary or source form.
‘The current version is: SWL.NET 1.2 build 1613 of 02-June-06.
New in This Release

‘Major improvements to the Visual Studio Integration Package

Much more accurate and reliable Intellisense; hovering over a keyword reports 9
the type of its smallest enclosing expression; hovering over a pattern reports

Running ML

* Type sml on Unix machines

* System will give you prompt

* Enter expression or declarations to evaluate:
- 3+ 5;
val it
- it * ;
val it = 16 : int
- val six = 3 + 3;
val six = 6 : int

*Or'"sml < file.ml"

8 : int

N

No type info
given- compiler
infers it

Defining Functions

* Example
- fun sucec x = x + 1;
val succ = fn : int -> int
- succ 12;
val it = 13 : int
- 17 * (succ 3);
val it = 68 : int;

*Or:
- val succ = fn x => x + 1;
val succ = fn : int -> int

Recursion

* All functions written using recursion and
if.. then.. else (and patterns):
- fun fact n =

if n = 0 then 1 else n * fact (n-1);

«if..then..else is an expression:
- if 3<4 then "moo" else "cow";
val it = "moo" : string
- types of branches must match




Local Declarations

- fun cylinderVolume diameter height =
let val radius = diameter / 2.0;
fun square y =y * y
in
3.14 * square(radius) * height
end;

val cylinderVolume = fn : real -> real -> real

- cylinderVolume 6.0 6.0;
val it = 169.56 : real

Built-in Data Types

* unit
- only value is ()
* bool
- true, false
- operators not, andalso, orelse
eint
-.,~2, ~1, 0, 1, 2,..
-+4,-,%*,div,mod, abs
-=,<,<=, etc.

Built-in Data Types

* real
-317,22, ..
-+, -, *, /
-<, <=, etc.

- no conversions from int to real: 2 + 3.3 is bad

- no equality (test that -0.001 < x-y < 0.001, etc.)
* strings

- "moo"

nwaAu "

- "moo cow

Overloaded Operators

¢ + - etc. defined on both int and real
* Which one to use depends on operands:
- fun succ x = x + 1

val succ = £n : int -> int

- fun double x = x * 2.0
val double = fn : real -> real

- fun double x = x + x
val double = fn : int -> int

Type Declarations

* Can add types when type inference does not work

- fun double (x:real) = x + x;
val double = fn : real -> real

- fun double (x:real) : real = x + x;
val double = fn : real -> real

Compound Types

* Tuples, Records, Lists
* Tuples

(14, "moo", true): int * string * bool

* Functions can take tuple argument
- fun power (exp,base) =
if exp = 0 then 1
else base * power (exp-1,base);

val power = fn : int * int -> int
- power(3,2);




Curried Functions (named after Curry)

* Previous power
- fun power (exp,base) =
if exp = 0 then 1
else base * power (exp-1,base);
val power = fn : int * int -> int
* Curried power function
- fun cpower exp =
fn base =>
if exp = 0 then 1
else base * cpower (exp-1l) base;

val cpower = fn : int -> (int -> int) v

Curried Functions (named after Curry)

* Previous power

- fun power (exp,base) =
if exp = 0 then 1
else base * power (exp-1,base);

val power = fn : int * int -> int
* Curried power function

- fun cpower exp base =
if exp = 0 then 1
else base * cpower (exp-1l) base;

val cpower = fn : int -> (int -> int)

Curried Functions
* Why is this useful?

- fun cpower exp base =
if exp = 0 then 1
else base * cpower (exp-1l) base;

val cpower = fn : int -> (int -> int)
* Can define

- val square = cpower 2

val square = fn : int -> int

- square 3;

val it = 9 : int

Records

* Like tuple, but with labeled elements:
{ name="Gus", salary=3.33, id=1l1 }:
{ name:string, salary:real, id:int };
* Selector operator:

- val x =
{ name="Gus", salary=3.33, id=11 };

Lists

* Examples
- [1, 2, 3, 4], ["'wombat", "numbat"]
- nil is empty list (sometimes written [])
- all elements must be same type
* Operations
- length length [1,2,3] = 3
- @-append [1,2]@[3,4] = [1, 2, 3, 4]
- u-prefix 1::[2,3] = [1, 2, 3]
- map map succ [1,2,3] = [2,3,4]

- #salary(x);
val it = 3.33 : real
- #name (x) ;
val it = "Gus" : string
22
Lists

* Functions on Lists

- fun product (nums) =
if (nums = nil)
then 1
else (hd nums) * product(tl nums);

val product = fn : int list -> int

- product([5, 2, 3]);
val it = 30 : int;




Pattern Matching
e List is one of two things:
- nil
- "first elem" :: "rest of elems"

-[1,2,3] = 1:[2,3] = 1:2:[3] = 1:2:3unil
* Can define function by cases
fun product (nil) =1
| product (x::xs) = x * product (xs);

Patterns on Integers
* Patterns on integers
fun listInts 0 = [0]
| 1listInts n = n::listInts(n-1);

listInts 3 = [3, 2, 1, 0];

* More on patterns for other data types next time

Many Types Of Lists

©1::2::nil : int list

"wombat"::"numbat"::nil :

* What type of list is nil?
- nil;
val it = [] : 'a list
* Polymorphic type

string list

- 'ais a type variable that represents any type

-1::nil : int list
"a"::nil : string list

The Length Function
* Another Example

fun length (nil) =0
| length (x::xs) = 1 + length (xs);

* What is the type of length?
* How about this one:

fun id x = x;

Polymorphism

fun length (nil) =0

| length (x::xs) = 1 + length (xs);
- val it = fun 'a list -> int

fun id x = x;

I
Hh
[
=]
»
1
v
»

- val it =

Type variable
represents

any type




