
1

CS 326
Design and UML Class Diagrams

Stephen Freund

1

Waterfall Software Process

Design Phase

• Design: specifying the structure of how a
software system will be written and function,
without actually writing the implementation

• A transition from "what" the system must do, to
"how" the system will do it
– What classes will we need to implement a system

that meets our requirements?
– What properties and methods will each class have?
– How will the classes interact with each other?

Identify and Design Classes

• Class identification from project spec /
requirements / lab handout
– nouns are potential classes, objects, properties
– verbs are potential methods or responsibilities of a

class

• Need a way to organize
and visualize those
classes and their
relationships

2

UML Diagrams

• Diagrams of an OO system
– PLs are not abstract enough for OO design
– UML is an open standard; lots of companies use it

• Ways to utilize UML?
– as a descriptive language: rigid formal syntax (like

programming)
– as a prescriptive language: shaped by usage and

convention
• okay to omit things from UML diagrams if they

aren't needed by team/supervisor/instructor

(UML: Unified Modeling Language)

+ init(width: Double, height: Double)
+ distanc(to: Rect) -> Double

+ width : Double
+ height : Double
/ area : Double

Rectangle How to Use Diagrams

• As a sketch to communicate aspects of system
– forward design: doing UML before coding
– backward design: doing UML after coding as

documentation
– often done on whiteboard or paper
– used to get rough selective ideas

• As a blueprint: a complete design to be
implemented

• As a programming language: with right tools,
code can be auto-generated from UML diagram

UML Object Diagram
• Show individual objects. (Heap Layout)

– name : type
– attribute = value
– lines: references

name = “Software Methods”
time = 9:55
days = T,R

CS326 : Class

term = “Fall 2018”
…

: Course Catalog

name = “Stephen Freund”
Steve : Instructor

name = “Alex S”
id = …
class-year = 19

Alex : Student

name = “Caroline K.”
id = …
class-year = 19

Caroline : Student

name = “Fiona Y.”
id = …
class-year = 20

Fiona : Student

name = “Dyrson M.”
id = …
class-year = 20

Dysron : Student

offering

student

student

student

TAInstructor

• Useful for thinking about organization of single
data structure...

• But doesn't scale.

3

Class Diagrams

Steve's Past: Dynamic Architecture Extraction...

UML Class Diagram

• A picture of:
– the classes in an OO system
– their properties and methods
– connections between the classes that interact or

inherit from each other
– "abstraction" of Object Diagram

• Not represented in a UML class diagram:
– details of how the classes interact with each other
– algorithmic details; how a particular behavior is

implemented

+ init(width: Double, height: Double)
+ distanc(to: Rect) -> Double

+ width : Double
+ height : Double
/ area : Double

Rectangle

Anatomy of Single Class Box

• Class name in top of box
– include protocol, struct

• Attributes
– should include all properties of the object

• Operations / methods
– omit trivial (get/set) methods
– but don't omit any methods from a protocol!
– don't include inherited methods

…

+ x : Double
+ y : Double

struct CGPoint

+ init(width: Double, height: Double)
+ distanc(to: Rect) -> Double

- width : Double
- height : Double
/ area : Double

Rectangle

Class Attributes
(Properties)
• visibility name: type =

default_value
• visibility:

+ public
protected
- private
~ internal (default)
/ derived

• static properties:
– underline

+ init(width: Double, height: Double)
+ distanc(to: Rect) -> Double

- width : Double
- height : Double
/ area : Double
+ empty: Rectangle

Rectangle

+ draw(in: GCRect)
- drawNode(center: CGPoint)
- drawEdge(src: CGPoint, dst: CGPoint)
+ zoomToMax()
+ ptInNode(viewPoint: CGPoint,
 nodeCenter: CGPoint) -> Bool
…

+ items : [GraphItems]? = nil
+ fontSize : Int = 16
…

GraphView

4

Class Operations
(Methods)
• visibility name(params)

-> return_type
• visibility:

+ public
protected
- private
~ internal (default)

• static methods:
– underline

+ init(width: Double, height: Double)
+ distanc(to: Rect) -> Double

- width : Double
- height : Double
/ area : Double
+ empty: Rectangle

Rectangle

+ draw(in: GCRect)
- drawNode(center: CGPoint)
- drawEdge(src: CGPoint, dst: CGPoint)
+ zoomToMax()
+ ptInNode(viewPoint: CGPoint,
 nodeCenter: CGPoint) -> Bool
…

+ items : [GraphItems]? = nil
+ fontSize : Int = 16
…

GraphView

Comments

+ draw(in: GCRect)
- drawNode(center: CGPoint)
- drawEdge(src: CGPoint, dst: CGPoint)
+ zoomToMax()
+ ptInNode(viewPoint: CGPoint,
 nodeCenter: CGPoint) -> Bool
…

+ items : [GraphItems]? = nil
+ fontSize : Int = 16
…

GraphView

changing any public
property will trigger a

full redraw

Generalization Relationships

+ contains(pt: CGPoint) -> Bool
+/ area : Double

protocol Shape

+ init(origin: CGPoint, size: CGSize)
+ contains(pt: CGPoint) -> Bool

- origin: CGPoint
- size: CGSize
+/ area : Double
+/ description : String

Rectangle

+/ description : String
protocol CustomStringConvertible

+ init(origin: CGPoint, size: CGSize,
 color: UIColor)
+ changeToRandomColor()

- color : UIColor
ColorRectangle

inheritance

conform to protocol

Associations: Usage Relationships

• Multiplicity, Name, Navigability

+ time: Time
+ term: Term

ClassOffering

…
Database

+ name : String
Professor

+ name: String
+ id : Int
…

Student

+ dept: String
+ number : Int
+ name: String
+ Description: String

Course

*

1 instructor

teachingAssingments

classes

0..2

1course

1..20
enrollments4

classes
role name

navigability

multiplicity

5

Associations: Usage Relationships

• Aggregation: "is part of"

…
Car

…
Tire

4

…
TweetTableViewCell

…
Tweet

…
GraphView

…
GraphItem

items

*

Associations: Usage Relationships

• Aggregation: "is part of"
• Composition: "is made of" (identical life cycles)

RatPoly

+ exp: Int
RatTermterms

*
+ numer: Int
+ denom: Int

RatNumcoeff

- locs: [String:CGPoint]
DrawableGraph

…
GraphADTgraph

…
TweetTableViewCell

…
Tweet

…
UIView

name
address

Customer

calcTax
calcTotal
calcWeight

date
status

Order

amount

protocol
Payment

authorize

number
type
expDate

Credit

cashTendered

Cash

authorize

name
bankID

Check

calcSubtotal
calcWeight

quantity
taxStatus

OrderDetail

priceForQuantity
weightForQuantity

shippingWeight
description

Item

1

0..*

0..*

1..*1 1
line
item

1..* 1

Order Tracking System

Photomosaic

+ name: String
+ image: UIImage
+ size: Size

Photo

photo

photos

*

+ red: UInt8
+ blue: UInt8
+ green: UInt8
+ black : Pixel

Pixels

+ extract(slice:PhotoSlice)
 -> FeatureVector

protocol FeatureExtractor

+ extract(photo:Photo)
 -> FeatureVector

extension
FeatureExtractor

+ extract(slice:PhotoSlice)
 -> FeatureVector

IntensityExtractor

+ extract(slice:PhotoSlice)
 -> FeatureVector

RGBExtractor

+ extract(slice:PhotoSlice)
 -> FeatureVector

QuadExtractor

extractor

collection

pixels *

+ rows: Int
+ columns: Int
+ tileSize: Size
/ image: UIImage

PhotoMatrix
asMatrix

grid
*

delegate

+ distance(to:FeatureVector)
 -> Double

- features: [Double]

FeatureVector

protocol
Sequence

+ photo(named:String)
 -> Photo
+ collection(named: String)
 -> PhotoCollection
+ namesOfCollections(…)
 -> [String]

+ name: String
+ photoSize: Size

PhotoCollection

+ [Int,Int] -> Pixel
+ [Rect] -> PhotoSlice

+ bounds: Rect

PhotoSlice
photo

asSlice

(note: omitted inits, some other parts...)

Dependency Relationships
uses

6

Exercise: Texas Hold'em Poker Game

• 2 to 8 human or computer players
• Each player has a name and stack of chips
• Computer players have a difficulty setting: easy, medium,

hard
• Summary of each hand:

– Dealer collects ante from appropriate players, shuffles the deck, and deals
each player a hand of 2 cards from the deck.

– A betting round occurs, followed by dealing 3 shared cards from the deck.
– As shared cards are dealt, more betting rounds occur, where each player can

fold, check, or raise.
– At the end of a round, if more than one player is remaining, players' hands are

compared, and the best hand wins the pot of all chips bet so far.

Exercise: Texas Hold'em Poker Game

• What classes are in this system?
– What are their responsibilities?
– Which classes collaborate?

• Draw a class diagram for this system.
• Include relationships between classes

(generalization and associational).

Class Diagrams Wrap Up

+Discover related data and attributes
+Get a quick picture of the important entities in a

system
+ See whether you have too few/many classes
+ See whether the relationships between objects

are too complex, too many in number, simple
enough, etc.

+ Spot dependencies between one class/object
and another

Class Diagrams Wrap Up

• But...
- Can't discover algorithmic (not data-driven)

behavior
- Can't see steps for objects to solve a given

problem
- Can't understand the app's overall control flow

(event-driven? web-based? sequential? etc.)

• Other types of UML Diagrams, but less useful to us
right now...

