CS 326
Design and UML Class Diagrams

Stephen Freund

Waterfall Software Process

* Requirement Doc.
* Prepare Use Cases

« Software architecture
* Map the stakeholders

————
: « Construct the software

B, Implementation X
—— * Data storage & retrieval

* Install
 Test and Debug

* Check errors
* Optimize capabilities

Design Phase

* Design: specifying the structure of how a
software system will be written and function,
without actually writing the implementation

* A transition from "what" the system must do, to
"how" the system will do it

— What classes will we need to implement a system
that meets our requirements?

— What properties and methods will each class have?

— How will the classes interact with each other?

Identify and Design Classes

* Class identification from project spec /
requirements / lab handout
— nouns are potential classes, objects, properties
— verbs are potential methods or responsibilities of a
class

* Need a way to organize
and visualize those E?/ﬁ
classes and their ‘{@
relationships /02)0(,\

(UML: Unified Modeling Language)

U M L Diagra ms + width : DOUEIZCtangle

+ height : Double
/ area : Double

+ init(width: Double, height: Double)

* Diagrams of an OO system + distanc(to: Rect) -> Double

— PLs are not abstract enough for OO design
— UML s an open standard; lots of companies use it
* Ways to utilize UML?

— as a descriptive language: rigid formal syntax (like
programming)

— as a prescriptive language: shaped by usage and
convention

* okay to omit things from UML diagrams if they
aren't needed by team/supervisor/instructor

How to Use Diagrams

* As a sketch to communicate aspects of system
— forward design: doing UML before coding

— backward design: doing UML after coding as
documentation

— often done on whiteboard or paper
— used to get rough selective ideas

* As a blueprint: a complete design to be
implemented

* As a programming language: with right tools,
code can be auto-generated from UML diagram

UML Object Diagram
* Show individual objects. (Heap Layout)
— hame : type
- att“bute = Value Alex : Student
name = “Alex S”
— lines: references dlassyear = 19
/
fona © n
id=...
offering CS326 : Class student " Lelass-year = 20
name = “Software Methods™ [~
time = 9:55
days =TR [~ student | Dysron : Student
name = “Dyrson M.”

id=...
class-year = 20

Instructor TA

Steve : Caroline : Student

]
name = “Stephen Freund” name = “Caroline K.”

class-year = 19

» Useful for thinking about organization of single
data structure...

* But doesn't scale.

Class Diagrams

superClass
uperlaterfaces

e o]

A Y
Methodlmocation | | FieldAccess | | BinaryExpr ArayRefExpr | | NewlnstanceExpr | | ArrayType | | PrimitiveType | | Name
g /\
\

Nl

SuperObjectDesignator | | ExprObjectDesignator

Steve's Past: Dynamic Architecture Extraction..

U M L Class Diagra m + width : Douglzcmngle

+ height : Double
/ area : Double

. + init(width: Double, height: Double)
e A P icture Of: + distanc(to: Rect) -> Double

— the classes in an OO system
— their properties and methods

— connections between the classes that interact or
inherit from each other

— "abstraction" of Object Diagram

* Not represented in a UML class diagram:
— details of how the classes interact with each other
— algorithmic details; how a particular behavior is

Anatomy of Single Class Box

Rectangle

* Class name in top of box |- width : Double
- height : Double

— include protocol, struct |/area:Double

+ init(width: Double, height: Double)
+ distanc(to: Rect) -> Double

* Attributes

— should include all properties of the object

struct CGPoint
. + x : Double
* Operations / methods +y : Double

— omit trivial (get/set) methods
— but don't omit any methods from a protocol!
— don't include inherited methods

implemented
Class Attributes ——Fectangie
- width : Double
(Properties) e Dol

TP + empty: Rectangle
* visibility name: type = [{init(width: Double, height: Double)

dEfGUIt VGIUE’ + distanc(to: Rect) -> Double

* visibility:
+ public
GraphView
prOteCted + items : [Graphltems]? = nil
- private + fontSize : Int = 16

~ internal (default) |+ draw(in: GCRect) ,
- drawNode(center: CGPoint)

/ derived - drawEdge(src: CGPoint, dst: CGPoint)
+ zoomToMax()
¢ static properties: + ptinNode(viewPoint: CGPoint,

nodeCenter: CGPoint) -> Bool

— underline

Class Operations
(Methods)

* visibility name(params)
-> return_type

* visibility:
+ public
protected
- private

~

* static methods:

internal (default)

— underline

Rectangle

- width : Double

- height : Double

/ area : Double

+ empty: Rectangle

+ init(width: Double, height: Double)
+ distanc(to: Rect) -> Double

GraphView

+ fontSize : Int =16

+ items : [Graphltems]? = nil

-.w-udraw(in: GCRect)

+ zoomToMax()

- drawNode(center: CGPoint)
- drawEdge(src: CGPoint, dst: CGPoint)

+ ptiInNode(viewPoint: CGPoint,
nodeCenter: CGPoint) -> Bool

Comments

changing any public
property will trigger a
full redraw

GraphView

+ items : [Graphltems]? = nil
+ fontSize : Int =16

+ draw(in: GCRect)

- drawNode(center: CGPoint)

- drawEdge(src: CGPoint, dst: CGPoint)

+ zoomToMax()

+ ptinNode(viewPoint: CGPoint,
nodeCenter: CGPoint) -> Bool

Generalization Relationships

[protocol CustomStringConvertible |

protocol Shape

[+/ description : String

+/ area : Double

conform to protocol

+ contains(pt: CGPoaint) -> Bool

\ -
\ -
-
\ -

Rectangle
- origin: CGPoint
- size: CGSize

+/ area : Double
+/ description : String

+ init(origin: CGPoint, size: CGSize)
+ contains(pt: CGPoint) -> Bool

inheritance

ColorRectangle

- color : UlColor

+ init(origin: CGPoint, size: CGSize,
color: UlColor)

+ changeToRandomColor()

Associations: Usage Relationships

* Multiplicity, Name, Navigability

Course

+ dept: String

+ number : Int

+ name: String

+ Descriptier; String

[]

cours: '\
navigability
classes
role name ___CtassOffering 4 enrollment Student
+ time: Time [¢———— .|+ name: String
+ term: Term +id:Int

7y classes 1..20
teachingAssingments| 0..2 \

1 v instructor

multiplicity

Professor

[+ name : String

Associations: Usage Relationships Associations: Usage Relationships

* Aggregation: "is part of" * Aggregation: "is part of"

Car [Tire | * Composition: "is made of" (identical life cycles)
A=

RatNum
I RatPoly o terms ™ Ratterm > coeff + numer: Int

| . Lrexp:Int + denom: Int

[TweetTableViewCell | [Tweet |
L ! L ! [DrawableGraph | graph GraphADT
[- locs: [String:CGPoint] |~
GraphView items Graphlt
-
P raphiiem [TweetTableViewCell [Tweet |

P |

UlView

. .
Order Tracking System Dependency Relationships
uses ~, FeatureVector
______ | - features: [Double]
Order ! | [pnotomosaic }------=""
Customer Jate OrderDetail + d\slarr::[e)(;ﬁ ;:a!uveVector)
i Sequence
name 1 0.* status 1 1..* | quantity q) extension
address CAlcTax i taxStatus - L FeatureExtractor
1
(cTotal IN€ GalcSubtotal [PhotoMatrix grecer 1 + extract(photo:Photo)
1 calcTota item | calcWeight ! ' > FeatureVector
calcWeight " +rows: Int .
0.* PhotoCollection + columns: Int protocol FeatureExtractor
- i collection + tileSize: Size " -
protocol : :;gz-sfz‘;'_"g‘ze /image: Ullmage + extrac;(sll::e:P\?oéoShce)
Payment > FeatureVector delegate
* + photo(named:String) 7 A
amount 1. 1 > Photo —_— T
+ collection(named: String) photo grid 7 / :
> PhotoCollection / i
Item + namesOiGollections(.) ||~ | Photo y ! IntensityExtractor
ippi i > [String] fy " R -
shlpp{ngWelght T name: String PhotoSlice i + extfcl(shce.PholoShce)
AN description +image: Ullmage | ghoto + bounds: Rect !
T priceForQuantity + size: Size asSlce it > Pixel |
e L T T \ weightForQuantity +[Rect] -> PhotoSlice ! RGBExtractor
! H ' pixels | - T~~~ + extract(slice:PhotoSlice)
Credit Cash Check — ! -> FeatureVector
number cashTendered name Pixels 3
t nklD +red: Ulnt8 ! QuadExtractor
ype bankID +blue: Ulnts :
expDate authorize sgeen:Ume | T + hotoSlice)
authorize +black ; Pixel > FeatureVector
(note: omitted inits, some other parts...)

Exercise: Texas Hold'em Poker Game

2 to 8 human or computer players
* Each player has a name and stack of chips

* Computer players have a difficulty setting: easy, medium,
hard

* Summary of each hand:
— Dealer collects ante from appropriate players, shuffles the deck, and deals
each player a hand of 2 cards from the deck.
— A betting round occurs, followed by dealing 3 shared cards from the deck.

— As shared cards are dealt, more betting rounds occur, where each player can
fold, check, or raise.

— At the end of a round, if more than one player is remaining, players' hands are
compared, and the best hand wins the pot of all chips bet so far.

Exercise: Texas Hold'em Poker Game

* What classes are in this system?
— What are their responsibilities?
— Which classes collaborate?
* Draw a class diagram for this system.

* Include relationships between classes
(generalization and associational).

Class Diagrams Wrap Up

+ Discover related data and attributes

+ Get a quick picture of the important entities in a
system

+ See whether you have too few/many classes

+ See whether the relationships between objects
are too complex, too many in number, simple
enough, etc.

+ Spot dependencies between one class/object
and another

Class Diagrams Wrap Up

* But...

- Can't discover algorithmic (not data-driven)
behavior

- Can't see steps for objects to solve a given
problem

- Can't understand the app's overall control flow
(event-driven? web-based? sequential? etc.)

* Other types of UML Diagrams, but less useful to us
right now...

