
1

CS 326
Design Patterns

Stephen Freund

What is a Design Pattern?

• A standard solution to a common programming
problem

Example 1: Encapsulation

• Problem: Exposed properties can be directly
manipulated
– Violations of the representation invariant
– Dependences prevent changing the implementation

• Solution: Hide some components
– Constrain ways to access the object

• Disadvantages:
– Interface may not (efficiently) provide all desired

operations to all clients
– Indirection may reduce performance

Example 2: Inheritance

• Problem: Repetition in implementations
– Similar abstractions have similar components

• Solution: Inherit default members from a
superclass
– Select an implementation via run-time dispatching

• Disadvantages:
– Code for a class is spread out, and thus less

understandable
– Hard to design and specify a superclass ahead of time
– Run-time dispatching introduces overhead

2

Example 3: Iteration

• Problem: To access all members of a collection, need a
specialized traversal for each data structure
– Introduces undesirable dependences
– Does not generalize to other collections

• Solution:
– The implementation provides traversal abstraction, does

bookkeeping
– Results are communicated to clients via a standard interface

(eg: Sequence methods)

• Disadvantages:
– Iteration order fixed by the implementation and not under

the control of the client

Example 4: Generics

• Problem:
–Well-designed data structures only hold one type of

object
• Solution:
– Programming language checks for errors in contents
– Set<Int> instead of just Set

• Disadvantages:
–More verbose types
– Sometimes less understandable error messages

Other Examples
• Reuse implementation without subtyping
• Reuse implementation, but change interface
• Permit a class to be instantiated only once
• Constructor that might return an existing object
• Constructor that might return a subclass object
• Combine behaviors without compile-time

extends clauses

• You could come up with a solution to all of these
on your own, but why reinvent the wheel???

Design Pattern in More Detail

• A standard solution to a common programming
problem
– A design or implementation structure that achieves a

particular purpose
– A high-level programming idiom

• A technique for making code more flexible
– Reduce coupling among program components

• Shorthand for describing software design
– connections among components, heap structure, ...

• Vocabulary for communication and documentation

3

When To Use A Design Pattern

• Rule #1: Delay to avoid over-thinking
– Get something basic and concrete working first
– Improve or generalize it once you understand it

• Design patterns can increase / decrease
understandability
– Improves modularity and flexibility, separates

concerns, eases description
– But usually adds indirection, increases code size

• If you encounter a design problem, consider
design patterns that address that problem

Canonical Reference

• aka: "Gang Of Four" Book

Three Kinds Of Patterns

• Creational patterns
– constructing objects

• Structural patterns
– combining objects, controlling heap layout

• Behavioral patterns
– communicating among objects, affecting object

semantics

Creational Patterns

• Initializers are inflexible
– Can't return a subtype of class they belong to
– Create new object, and never re-use existing one

• Factory Patterns
– ADT creators that are not Swift init()s

• Sharing Patterns:
– Reuse objects to save space or share common state

4

Factories: Changing Implementations

• Supertypes support multiple implementations
– protocol Matrix { ... }

– class SparseMatrix : Matrix { ... }
– class DenseMatrix : Matrix { ... }

• Clients use the supertype (Matrix) but still create
objects:
– let m : Matrix = SparseMatrix() or
– let m : Matrix = DenseMatrix() or ...

• Switching implementations requires changing
code

A Factory
class MatrixFactory {

public static func createMatrix() -> Matrix {
...
return SparseMatrix()

}
}

• Clients call MatrixFactory.createMatrix()
instead of a particular constructor

+To switch implementation, change only one place
+createMatrix() can do arbitrary

computations to decide what kind of matrix to
make

Example: Bicycle race
class Race {
public init() {
let bike1 = Bicycle()
let bike2 = Bicycle()

…
}
…

}

class TourDeFrance : Race {
public init() {
let bike1 = RoadBicycle()
let bike2 = RoadBicycle()
…

}
…

}

class Cyclocross : Race {
public init() {
let bike1 = MountainBicycle()
let bike2 = MountainBicycle()
…

}
…

}

Factory Method for Bicycles

class Race {
func createBicycle() -> Bicycle {
Bicycle()

}

init() {
let bike1 =
createBicycle()
let bike2 =
createBicycle()

…
}
…

}

class TourDeFrance : Race {
func createBicycle() -> Bicycle {
RoadBicycle()

}
…

}

class Cyclocross : Race {
func createBicycle() -> Bicycle {
MountainBicycle()

}
…

}

5

Factory Object for Bicycles
class BicycleFactory {
func createBicycle() -> Bicycle { ... }
func createWheel() -> Wheel { ... }
func createFrame() -> Frame { ... }

}

class RoadBicycleFactory: BicycleFactory {
override func createBicycle() -> Bicycle {
RoadBicycle()

}
}

class MoutainBicycleFactory: BicycleFactory {
override func createBicycle() -> Bicycle {
MoutainBicycle()

}
}

Passing Factory Objects Around
class Race {

init(factory : BicycleFactory) {
let bike1 = factory.createBicycle()
let bike2 = factory.createBicycle()
…

}
}

class TourDeFrance : Race {
init() { super.init(factory: RoadBicycleFactory()) }

}

class Cyclocross: Race {
init() { super.init(factory: MountainBikFactory()) }

}

Separate Control of Bicycles / Races
class Race {

init(factory : BicycleFactory) {
let bike1 = factory.createBicycle()
let bike2 = factory.createBicycle()
…

}
}

class TourDeFrance : Race {
init(factory : BicycleFactory) {
super.init(factory: factory)

}
init() { super.init(factory: RoadBicycleFactory()) }

}

let race = TourDeFrance(factory: unicycleFactory)

External Dependency Injection
• Java Example:

– BicycleFactory f = new UnicycleFactory();
– Race r = new TourDeFrance(f);

• With external dependency injection:
– BicycleFactory f = ((BicycleFactory)

DependencyManager.get("BicycleFactory"));
– Race r = new TourDeFrance(f);

• Plus an external file:
<service-point id="BicycleFactory">

<invoke-factory>

<construct class="Bicycle">

<service>Tricycle</service>

</construct>
</invoke-factory>

</service-point>

+ Change the factory without recompiling
- External file is essential part of program

6

External Dependency Injection
• Interface Builder and Storyboards...

Factories: Summary

• Problem: Want more flexible abstractions for what
class to instantiate.

• Factory method
– Call method that can do any computation and return any

subtype

• Factory object
– Bundles factory methods for a family of types
– Can store factory object, pass to constructors, etc.

• Dependency Injection
– Put choice of subclass in a file to avoid source-code changes

or even recompiling when decision changes

Design Patterns for Sharing

• Problem: Swift initializers always return a new
object, never a pre-existing object

• Singleton: only one object exists at runtime
– Factory method returns the same object every time

• Interning: only one object with a particular
(abstract) value exists at run time
– Factory method returns an existing object, not a new

one

Singleton
• Only one object of the given type exists
• Good for unique, shared resources

– UserDefaults.standard

– DispatchQueue.main
– UIApplication.sharedApplication()

– Logger for diagnostic messages
• Better than lots of global properties
– logically group related values
– Can use initializer / factory to customize
– eg: Internationalization: messages in a particular

language

7

Creating Singletons
• In Swift class:
– public constant property to hold singleton object
– private initializer

class Logger {
static public let instance = Logger()
private init() { ... }

}

• In client:
– Refer to the single instance of the Singleton class
– Logger.instance.print("button clicked")

Interning pattern
• Reuse existing objects instead of creating new ones

street: "47 Lab Campus Drive"
town: "Williamstown, MA 01267"

"Stephen Freund"

"Bill Lenhart"

street: "47 Lab Campus Drive"
town: "Williamstown, MA 01267"

...

address

name

address

name

class Address : Hashable {
let street : String
let town : String
...

}

Interning pattern
• Reuse existing objects instead of creating new ones

• Less space
• objects can be compared with === instead of ==
• Sensible only for immutable objects

street: "47 Lab Campus Drive"
town: "Williamstown, MA 01267"

"Stephen Freund"

"Bill Lenhart"
...

address

name

address

name

Simple Interning Mechanism

• Maintain a collection of all objects
• If an object already appears, return that instead

var interned = Set<Address>()

func intern(_ n : Address) -> Address {
// inserts if not present, returns elem == n in set.
let (_, memberAfterInsert) = interned.insert(n)
return memberAfterInsert

}

• Create the object, but perhaps discard it and
return another when interning.

8

java.lang.Boolean and Interning
public class Boolean {

private final boolean value;

// construct a new Boolean value

public Boolean(boolean value) {

this.value = value;

}

// Singletons for true and false

public static Boolean FALSE = new Boolean(false);

public static Boolean TRUE = new Boolean(true);

// factory method that uses interning

public static Boolean valueOf(boolean value) {

return value ? TRUE : FALSE;

}

}
Boolean b = Boolean.valueOf(true);

vs
Boolean b = new Boolean(true);

Should have
never been
made public

