CS 326
Design Patterns

Stephen Freund

What is a Design Pattern?

* A standard solution to a common programming
problem

Example 1: Encapsulation

* Problem: Exposed properties can be directly
manipulated
— Violations of the representation invariant
— Dependences prevent changing the implementation
* Solution: Hide some components
— Constrain ways to access the object
* Disadvantages:

— Interface may not (efficiently) provide all desired
operations to all clients

— Indirection may reduce performance

Example 2: Inheritance

* Problem: Repetition in implementations
— Similar abstractions have similar components

* Solution: Inherit default members from a
superclass
— Select an implementation via run-time dispatching

* Disadvantages:

— Code for a class is spread out, and thus less
understandable

— Hard to design and specify a superclass ahead of time
— Run-time dispatching introduces overhead

Example 3: Iteration

* Problem: To access all members of a collection, need a
specialized traversal for each data structure
— Introduces undesirable dependences
— Does not generalize to other collections

* Solution:

— The implementation provides traversal abstraction, does
bookkeeping

— Results are communicated to clients via a standard interface
(eg: Sequence methods)

* Disadvantages:

— Iteration order fixed by the implementation and not under
the control of the client

Example 4: Generics

* Problem:

— Well-designed data structures only hold one type of
object

* Solution:
— Programming language checks for errors in contents
— Set<Int> instead of just Set

* Disadvantages:

— More verbose types
— Sometimes less understandable error messages

Other Examples

* Reuse implementation without subtyping

* Reuse implementation, but change interface

* Permit a class to be instantiated only once

* Constructor that might return an existing object
* Constructor that might return a subclass object

* Combine behaviors without compile-time
extends clauses

* You could come up with a solution to all of these
on your own, but why reinvent the wheel???

Design Pattern in More Detail

* A standard solution to a common programming
problem

— A design or implementation structure that achieves a
particular purpose

— A high-level programming idiom
* Atechnique for making code more flexible
— Reduce coupling among program components

Shorthand for describing software design
— connections among components, heap structure, ...

* Vocabulary for communication and documentation

When To Use A Design Pattern

* Rule #1: Delay to avoid over-thinking
— Get something basic and concrete working first
— Improve or generalize it once you understand it
* Design patterns can increase / decrease
understandability

— Improves modularity and flexibility, separates
concerns, eases description

— But usually adds indirection, increases code size

* If you encounter a design problem, consider
design patterns that address that problem

Canonical Reference

1), nQ
Design Patterns
Elements of Reusable
Object-Oriented Software

oy

* aka: "Gang Of Four" Book

Three Kinds Of Patterns

* Creational patterns

— constructing objects
* Structural patterns

— combining objects, controlling heap layout
* Behavioral patterns

— communicating among objects, affecting object
semantics

Creational Patterns

* |nitializers are inflexible
— Can't return a subtype of class they belong to
— Create new object, and never re-use existing one

* Factory Patterns
— ADT creators that are not Swift init()s
* Sharing Patterns:
— Reuse objects to save space or share common state

Factories: Changing Implementations

* Supertypes support multiple implementations

— protocol Matrix { ... }
— class SparseMatrix : Matrix { ... }
— class DenseMatrix : Matrix { ... }

* Clients use the supertype (Matrix) but still create
objects:
— let m : Matrix = SparseMatrix() Or
— let m : Matrix = DenseMatrix() Or...

* Switching implementations requires changing
code

A Factory

class MatrixFactory {
public static func createMatrix() -> Matrix {

return SparseMatrix()

}

* Clients call MatrixFactory.createMatrix ()
instead of a particular constructor

+ To switch implementation, change only one place

+createMatrix () can do arbitrary

computations to decide what kind of matrix to
make

Example: Bicycle race

class Race {
public init() {
let bikel = Bicycle()
let bike2 = Bicycle()

class TourDeFrance : Race {
public init() {
let bikel = RoadBicycle()
} let bike2 = RoadBicycle ()

class Cyclocross : Race {

public init() {
1 ’ let bikel = MountainBicycle ()
let bike2 = MountainBicycle ()

Factory Method for Bicycles

class Race {
func createBicycle() -> Bicycle {

Bicycle()
} class TourDeFrance : Race {
init() { func createBicycle() -> Bicycle {
let bikel = RoadBicycle ()
createBicycle () i
let bike2 = }
createBicycle ()

class Cyclocross : Race {
func createBicycle() -> Bicycle {
} MountainBicycle ()

}

Factory Object for Bicycles

class BicycleFactory {

func createBicycle() -> Bicycle { ... }
func createWheel() -> Wheel { ... }
func createFrame() -> Frame { ... }

class RoadBicycleFactory: BicycleFactory {
override func createBicycle() -> Bicycle {
RoadBicycle ()

class MoutainBicycleFactory: BicycleFactory {
override func createBicycle() -> Bicycle {
MoutainBicycle ()

Passing Factory Objects Around

class Race {
init(factory : BicycleFactory) {
let bikel = factory.createBicycle()
let bike2 = factory.createBicycle ()

class TourDeFrance : Race {
init() { super.init(factory: RoadBicycleFactory()) }

class Cyclocross: Race {
init() { super.init(factory: MountainBikFactory()) }

Separate Control of Bicycles / Races

class Race {
init(factory : BicycleFactory) {
let bikel = factory.createBicycle ()
let bike2 = factory.createBicycle ()

class TourDeFrance : Race {
init(factory : BicycleFactory) {
super.init(factory: factory)
}
init() { super.init(factory: RoadBicycleFactory()) }

let race = TourDeFrance (factory: unicycleFactory)

External Dependency Injection

* Java Example:
— BicycleFactory £ = new UnicycleFactory() ;
— Race r = new TourDeFrance (f) ;

* With external dependency injection:
— BicycleFactory £ = ((BicycleFactory)
DependencyManager.get ("BicycleFactory")) ;
— Race r = new TourDeFrance (f) ;

¢ Plus an external file:

<service-point id="BicycleFactory">
<invoke-factory>
<construct class="Bicycle">
<service>Tricycle</service>
</construct>

</invoke-factory> + Change the factory without recompiling
</service-point> - External file is essential part of program

External Dependency Injection

* Interface Builder and Storyboards...

roe » A) g iPhone 8 Plus | Rathum | Build RatNum: Succeeded | Today at 3:47 P B ===

5 < > [Rathum) [RatCalc) [Main.storyboard) (-] Rathum Scene)) Ratium!

Class | RatCalcViewController

Wodle B

Inherit Module From Targg
mmmmmmmmmmm

Identity

= Storyboard ID

Restoration ID.
ADD

swap

Use Storyboard ID

User Defined Runtime Attributes.

nD0eB

View Controller - A controller that
manages a view.

[[] View as: iPhone 8 (+C R) — 50% + 1= ol tai| B3

Factories: Summary

* Problem: Want more flexible abstractions for what
class to instantiate.
* Factory method

— Call method that can do any computation and return any
subtype

* Factory object

— Bundles factory methods for a family of types

— Can store factory object, pass to constructors, etc.
* Dependency Injection

— Put choice of subclass in a file to avoid source-code changes
or even recompiling when decision changes

Design Patterns for Sharing

* Problem: Swift initializers always return a new
object, never a pre-existing object

 Singleton: only one object exists at runtime
— Factory method returns the same object every time

* Interning: only one object with a particular
(abstract) value exists at run time

— Factory method returns an existing object, not a new
one

Singleton

* Only one object of the given type exists
* Good for unique, shared resources

— UserDefaults.standard
— DispatchQueue.main
— UIApplication.sharedApplication ()
— Logger for diagnostic messages
* Better than lots of global properties

— logically group related values
— Can use initializer / factory to customize

— eg: Internationalization: messages in a particular
language

Creating Singletons Interning pattern

 In Swift class: * Reuse existing objects instead of creating new ones
— public constant property to hold singleton object
- private initializer L street: "47 Lab Campus Drive"
address town: "Williamstown, MA 01267"

class Logger {

static public let instance = Logger ()
private init() { ... } \\ p—

street: "47 Lab Campus Drive"

} address L—"| town: "Williamstown, MA 01267"
e In client: class Address : Hashable {
let street : String

— Refer to the single instance of the Singleton class let town : String

— Logger.instance.print ("button clicked")

Interning pattern Simple Interning Mechanism

* Reuse existing objects instead of creating new ones « Maintain a collection of all objects

* |f an object already appears, return that instead

name
T vax sntornad = set<aairess> ()
func intern(_ n : Address) -> Address {
- " // inserts if not present, returns elem == n in set.
~ BilllEenhoig let (_, memberAfterInsert) = interned.insert(n)
T~ name return memberAfterInsert
address }

* Less space

* objects can be compared with === instead of == * Create the object, but perhaps discard it and

« Sensible only for immutable objects return another when interning.

java.lang.Boolean and Interning

public class Boolean {
private final boolean value; ShOU Id haVe
never been
// construct a new Boolean value .
public Boolean (boolean value) { made pUbIIC
this.value = value;

// Singletons for true and false
public static Boolean FALSE = new Boolean(false);
public static Boolean TRUE = new Boolean (true) ;

// factory method that uses interning
public static Boolean valueOf (boolean value) {
return value ? TRUE : FALSE;

Boolean b = Boolean.valueOf (true) ;

VS
Boolean b = new Boolean(true) ;

