
1

CS 326
Design and Style

Stephen Freund

1

Modular Design

• Module: Any design unit in software

• Modular design focusses:
– what modules are defined
– what their specifications are
– how they relate to each other

• Not the implementations of the modules
– Each module respects other modules’ abstraction

barriers

Ideals of Modular Software

Decomposable – can be broken down into modules to
reduce complexity and allow teamwork

Composable – “Having divided to conquer, we must reunite
to rule [M. Jackson].”

Understandable – one module can be examined, reasoned
about, developed, etc. in isolation

Continuity – a small change in the requirements should
affect a small number of modules

Isolation – an error in one module should be as contained as
possible

General Design Issues

• Cohesion: how well components fit together to
form something that is self-contained,
independent, and with a single, well-defined
purpose.

• Coupling: how much dependency there is
between components

• Decrease coupling. Increase cohesion.
– Each method does one thing well.
– Each module represents a single abstraction.

2

Cohesion and Coupling

"god class"

Single
Class

Strongly coupled

Controller

Model View

Weakly coupled

Controller

Model View

Method Cohesion

• Methods should do one thing well:
– Compute a single value
– Observe or mutate, don’t do both
– Don’t print as a side effect of some other operation

• Don’t limit future uses of the method by having
it do multiple, not-necessarily-related things

• Avoid:
– long parameter lists
– "flag" parameters (symptom of poor cohesion)

Properties

• A variable should be a property if and only if:
– It is part of the inherent internal state of the object
– It has a value that retains meaning throughout the

object's life
– Its state must persist past the end of any one public

method

• Computed properties
– connect abstract state to concrete variables
– do minor book-keeping
– don't over-do it

Method vs Computed Property?
public struct FacialExpression {
...

let eyes: Eyes
let mouth: Mouth

public func happier() -> FacialExpression {
return FacialExpression(eyes: eyes, mouth: mouth.happier())

}

// vs:

var sadder: FacialExpression {

return FacialExpression(eyes: eyes, mouth: mouth.sadder)
}

}

3

Initializers

• Object should be completely initialized after
initializer is done
– The rep invariant should hold
– Shouldn't need to call other methods to “finish”

initialization

• Use optional initializers if failures may occur
class Double {

init?(_ str : String) {
if (str is not valid) {
return nil

} else { ... }
}

if let d = Double(" ") {
...

}

Names

• Follow conventions of language you are using
• https://swift.org/documentation/api-design-

guidelines/#naming

Good Names
• Class names: generally nouns
– Beware "verb + er" names, e.g. Manager,
Scheduler, ShapeDisplayer

• Interface/protocol names often –able/-ible adjectives:
Iterable, Comparable, …

Good Names
• Property/Method names: noun or verb phrases
– Nouns for properties:
count, totalSales

– Nouns/Adjectives for observers:
distance(to:), successor(),
pointIsInside(_:_:), inside(_:of:)

– Verbs for mutators:
print(),sort(),append(_:)

• Choose affirmative, positive names over negative
ones

isSafe not isUnsafe
isEmpty not hasNoElements

https://swift.org/documentation/api-design-guidelines/

4

Bad Names

• Bad:
– count, flag, status, label, check,
value, pointer

– names starting with my…

• Describe what is being counted, what the “flag”
indicates, etc. Phrases are fine!
– numberOfStudents, isCourseFull,
calculatePayroll, validateWebForm,
…

Bad Names

• Avoid non-standard/ambiguous abbreviations:
calc, disp, oper, acc, clr, ctrller,
btn, …

• Short names in local contexts are good:
– Good:
for i in 0..<size { items[i] = 0 }

– Bad:
for theLoopCounter in 0..<size {
theCollectionItems[theLoopCounter] = 0
}

Class Design Ideals

• Cohesion
• Coupling

• Completeness: Every class should present a
complete interface

• Consistency: In names, param/returns,
ordering, and behavior

Completeness

• Include important methods to make a class
easy to use

• Counterexamples:
– A mutable collection with add but no remove
– A tool object with a setHighlighted

method but no setUnhighlightedmethod
– Date class with no date-arithmetic operations

5

Completeness

• Objects that have a natural ordering should
implement Comparable protocol (== and <)

• Objects that you test for equality, store in other
structures, or use as keys in map should implement:
– Equatable protocol (==) , or
– Hashable protocol (== and hashValue)

• Most objects should implement
CustomStringConvertible (description)

http://www.cs.williams.edu/~freund/cs326/GraphADT/RGB.swift

But…

• Don’t include everything you can think of
– If you include it, you’re stuck with it forever...
– ...even if almost nobody ever uses it

• Tricky balancing act
– Include what’s useful, but don’t make things overly

complicated
– You can always add it later if you really need it

Consistency

• A class should have
– Consistent names, parameters/returns, ordering, and

behavior
– Use similar naming; accept parameters in the same

order
• Counterexamples:

– setFirst(index: Int, value: String)
– setLast(value: String, index: Int)

– In Java: String.length(), array.length, Vector.size()

Open-Closed Principle

• Big Idea: Software entities should be open for
extension, but closed for modification.

• Add features by adding new classes or reusing
existing ones in new ways

• Don't add features by modifying existing classes
– Existing code works and changing it can introduce

bugs and errors.
– Classes can become over-specialized.

http://www.cs.williams.edu/~freund/cs326/GraphADT/RGB.swift

6

Documenting a Class

• External: /** ... */ or ///
– Classes, structs, properties, methods.
– What clients need to know (Spec!)
– Specific enough to exclude unacceptable implementations
– General enough to allow for all correct implementations

• Internal: /* ... */ or //
– Inside method bodies
– What developer needs to know
– How code is implemented
– Invariants, internal pre/post conditions
– Design rationale

RatNum Source

RatNum Docs

Other Random Items

• Enum with only 2 values better than Bool:
– oven.set(temp: 200, units: true)
– oven.set(temp: 200, units: Temperature.celsius)

• Don't use Strings to represent non-text data
– struct Point { x,y : Int } vs "(3,4)"

• MVC!
• Don't put print statements in your core classes
• Not func printDescription() {...}
• Use var description : String {...}

Closing Thoughts on Design
• Always remember your reader
– Clients
– Other programmers

• What do they need to know?
– Clients: How to use it
– Implementers: How it works, why it was done this way

• Re-read style and design advice regularly
– Pragmatic Programmer Readings!

• Practice. It will become more natural...
• But always look for better ways to do things!

http://www.cs.williams.edu/~freund/cs326/RatNumSource/RatNum.html
http://www.cs.williams.edu/~freund/cs326/RatNumDocs/Structs/RatNum.html

7

Choosing types – some hints
Numbers: Favor int and long for most numeric computations

EJ Tip #48: Avoid float and double if exact answers are required
Classic example: Money (round-off is bad here)

Strings are often overused since much data is read as text

Independence of Views

• MVC!
• Don't put print statements in your core classes
– Locks your code into a text representation

• Instead, have your core classes return data that
can be displayed by the view classes
– Bad: func printMyself() {...}
– Good: var description : String {...}

