
Lab 2
Due 19 February
Design due in class on Wed.

Handout 3
CSCI 136: Spring, 2007

12 February

Random Writing

1 Short Answers

1. What is printed by the following program?

class Example {
public int num;

public Example(int initial) {
num = initial;

}

public int getNum() {
num = num + 1;
return num;

}

public static void main(String args[]) {
Example first = new Example(10);
Example second = new Example(20);
System.out.println(first.getNum());
System.out.println(second.getNum());

}
}

What would be printed if we changed the declaration of num to be

public static int num;

What does this tell you about static fields?

2. Answer the following questions from the book (Note the difference between Self Check Problems

and regular Problems in the book):

Self Check Problem 3.2

Self Check Problem 3.3

Self Check Problem 3.4

Problem 3.6 (don’t write the class— just answer what the advantage would be)

Hand in your answers with your lab design Wednesday morning.

1



2 Lab Program

Consider the following three sentences:

Call me Ishmael. Some years ago–never mind how long precisely–having repeatedly smelt

the spleen respectfully, not to say reverentially, of a bad cold in his grego pockets, and

throwing grim about with his tomahawk from the bowsprit?

Call me Ishmael. Some years ago–never mind how long precisely–having little or no money

in my purse, and nothing particular to interest me on shore, I thought I would sail about a

little and see the watery part of the world.

Call me Ishmael, said I to myself. We hast seen that the lesser man is far more prevalent

than winds from the fishery.

The second is the first sentence of Melville’s Moby Dick. The other two were generated “in Melville’s

style” using a simple algorithm developed by Claude Shannon in 1948.∗ You will implement his al-

gorithm in this week’s lab. In addition to producing mildly entertaining output, this lab enables you

to:

1. use the Vector and Association classes;

2. build more complex structures out of these basic building blocks; and

3. design and implement several new classes.

Character Distributions. Our algorithm is based on letter probability distributions. Imagine tak-

ing the book Tom Sawyer and determining the probability with which each character occurs. You’d

probably find that spaces are the most common, that the character ‘e’ is fairly common, and that the

character ‘q’ is rather uncommon. After completing this level-0 analysis, you’d be able to produce ran-

dom Tom Sawyer text based on character probabilities. It wouldn’t have much in common with the

real thing, but at least the characters would tend to occur in the proper proportion. In fact, here’s an

example of what you might produce:

Level 0: rla bsht eS ststofo hhfosdsdewno oe wee h .mr ae irii ela iad o r te u t mnyto

onmalysnce, ifu en c fDwn oee iteo

Now imagine doing a slightly more sophisticated level-1 analysis by determining the probability

with which each character follows every other character. You would probably discover that ‘h’ follows ‘t’

more frequently than ‘x’ does, and you would probably discover that a space follows ‘.’ more frequently

than ‘,’ does.

More concretely, if you are analyzing the text “the theatre is their thing”, ‘e’ appears after ‘h’ three

times, and ‘i’ appears after ‘h’ one time; no other letters appear after ‘h.’ So the probability that ‘e’

follows ‘h’ is .75; the probability that ‘i’ follows ‘h’ is .25; the probability that any other letter follows ‘h’

is 0.

Using a level-1 analysis, you could produce some randomly generated Tom Sawyer text by picking

a character to begin with and then always choosing the next character based on the previous one and

the probabilities revealed by the analysis. Here’s an example:

Level 1: ”Shand tucthiney m?” le ollds mind Theybooure He, he s whit Pereg lenigabo

Jodind alllld ashanthe ainofevids tre lin–p asto oun theanthadomoere

∗Claude Shannon, “A mathematical theory of communication”, Bell System Technical Journal, 1948. His technique was
popularized by Dewdney’s article “A potpourri of programmed prose and prosody” that appeared in Scientific American, 122-TK,

1989.

2



Now imagine doing a level-k analysis by determining the probability with which each character

follows every possible sequence of characters of length k. A level-5 analysis of Tom Sawyer would

reveal that ‘r’ follows “Sawye” more frequently than any other character. After a level-k analysis,

you’d be able to produce random Tom Sawyer text by always choosing the next character based on the

previous k characters (the seed) and the probabilities revealed by the analysis.

At only a moderate level of analysis (levels 5–7), the randomly generated text begins to take on

many of the characteristics of the source text. It probably won’t make complete sense, but you’ll be

able to tell that it was derived from Tom Sawyer as opposed to, say, Moby Dick. Here are some more

examples:

Level 2: “Yess been.” for gothin, Tome oso; ing, in to weliss of an’te cle – armit. Papper a

comeasione, and smomenty, fropeck hinticer, sid, a was Tom, be suck tied. He

sis tred a youck to themen

Level 4: en themself, Mr. Welshman, but him awoke, the balmy shore. I’ll give him that

he couple overy because in the slated snufflindeed structure’s kind was rath.

She said that the wound the door a fever eyes that WITH him.

Level 6: people had eaten, leaving. Come – didn’t stand it better judgment; His hands

and bury it again, tramped herself! She’d never would be. He found her spite of

anything the one was a prime feature sunset, and hit upon that of the forever.

Level 8: look-a-here – I told you before, Joe. I’ve heard a pin drop. The stillness was

complete, how- ever, this is awful crime, beyond the village was sufficient. He

would be a good enough to get that night, Tom and Becky.

Level 10: you understanding that they don’t come around in the cave should get the word

“beauteous” was over-fondled, and that together” and decided that he might as

we used to do – it’s nobby fun. I’ll learn you.”

Once we have processed the text and stored it in a table structure that allows us to check proba-

bilities, we pick k letters (for example, the first k in the input text) to use as a beginning for our new

text. Then we choose subsequent characters based on the preceding k characters and the probability

information.

Program Design. For now, we will focus on implementing a level 2 analysis. That is, we will com-

pute the next character to print based on the previous two characters only.

Think about the design and prepare a written design description of this program. Submit your

design in lecture on Wednesday. I will look through them and return them at the beginning

of lab.

When thinking about the design, focus on what would constitute a good data structure for this

problem. Your data structure needs to keep a table of info and be able to support two key operations:

• update the probabilities in the table, given a string of 2 characters and the succeeding character.

• select a next character, given a string 2 characters and the probabilities stored in your table.

You could try to save the frequency information in a big array, but the size will quickly become too

large. For k = 2, you would need a three-dimensional array whose size is about 27,000 entries if you

include blanks and punctuation. For larger k, this number becomes much bigger.

Instead, develop a Table class which is implemented as a Vector of Associations. Each Association
should have a character sequence (stored as a String) as its key, along with a value which is a

FrequencyList. The FrequencyList keeps track of which characters appeared after the given se-

quence, along with a frequency.

There are many ways to implement the frequency list. A good start is. . . another Vector of

Associations. Thus the frequency list’s Vector would consist of Associations in which the key is

3



a single character (which can be stored simply as a String) and the value is a count of the number of

times that that letter occurred after the k-character sequence with which the list is associated (stored

as an Integer). Think carefully about what methods the frequency list needs to support and any

other instance variables that might be useful.

The data structure design built from these two classes has the benefit of having only as many

entries as necessary for the given input text. You may find it helpful to look carefully at the word

frequency program in Section 3.3 of Bailey.

Your main method for the program should be written in a third class, WordGen, which reads the in-

put text, builds the table, and prints out a randomly-generated string based on the character sequence

probabilities from the input text.

To summarize, you will write three classes for this lab: Table, FrequencyList, and WordGen.

The design you turn in Wednesday morning should include a description of each of them.

Importing Class Definitions. To ensure that your program can find the structure package for the

implementations of Vector and Association, you will need to add this to the top of your Java files:

import structure5.*;

Warning: When you import the classes Random and Scanner, however, use the following lines:

import java.util.Random;
import java.util.Scanner;

If you write “import java.util.*;” as we did above, the program will get confused as to which

version of the Vector class it should use, since there is a Vector defined in java.util as well as in

structure.

Implementation Strategy. You should build your program in stages that you have planned out

ahead of time. While writing and debugging the code, use a fixed a String constant as the input (e.g.,

“the theater is their thing”) and use a fixed k = 2.

After the input has been processed you should generate and print out new text using the frequencies

in the table. You may start with a fixed sequence of letters that appears in the table or choose starting

characters randomly. Generate and print about 500 letters of randomly-generated text so that we can

see how your program works. Be sure to handle the special case where you encounter a sequence that

has no known successor characters in a reasonable way.

Once the basic program is working, change it to accept input from the keyboard using the Scanner
class. When using the Scanner, build up a string of the entire input line by line before performing any

frequency analysis. You can use the Scanner methods hasNextLine() to find out if there is another

line of input ready and nextLine() to read the next line if it exists, as in the following code snippet.

(This code uses a StringBuffer to create large strings efficiently, as we will see in lecture.)

Scanner in = new Scanner(System.in);
StringBuffer textBuffer = new StringBuffer();
while (in.hasNextLine()) {

String line = in.nextLine();
textBuffer.append(line);
textBuffer.append("\n");

}
String text = textBuffer.toString();
// text is now the full contents of the input.

End of the input is signaled for Java on the Mac (and, indeed, on any Unix system) by typing

“Control-D” on a new line.

You may also read your input from any text file, e.g. “whosonfirst.txt”, with this command:

java WordGen < whosonfirst.txt

4



This is not specific to Java. This “input redirection” can be used with any program running on Unix

system.

Finally, change WordGen to support levels of analysis other than 2. If you have designed the struc-

ture well, simply passing longer strings to the Table methods should be sufficient, and you should not

need to change any code except in the WordGen class.

You can also change your main method to use a command line parameter specifying the level of

analysis. You can then, for example, run the program with the command:

java WordGen 5 < whosonfirst.txt

to specify level-5 analysis. Command line options are passed to your main method as an array of

strings. You can use the following skeleton code for ensuring that there is at least one argument and

for converting the first argument to a string:

public static void main(String args[]) {
if (args.length == 0) {
// no args, so print usage line and do nothing else
System.out.println("Usage: java WordGen <level>");

} else {
// convert first argument to k
int k = Integer.parseInt(args[0]);
// rest of code here

}
}

Optional Extension: Word-level Analysis. Instead of working at the character level, you could

work at the word level. Only attempt this after you get the required work finished (and make a backup

copy of the character-level analysis). Does this make the results better/worse in any way?

3 Sample Texts

I have put several texts for you to analyze in the following directory:

/usr/mac-cs-local/share/cs136/labs/wordgen/

The file whosonfirst.txt is a good file to try processing first. The others are quite a bit larger and

may take a few minutes to process for k larger than 5 or 6. Feel free to use your own texts for analysis

as well. The Gutenberg Project has thousands of books available for download from the web and is a

good place to look. Be sure to send any entertaining output you generate along the way. I’ll post the

best up on the web site.

4 Submission

Package your three Java source files into a “tar file” lab2.tar, and submit it using the turnin utility

before midnight, next Monday.

A “tar file” is like a ZIP or Stuffit file from the Windows or Mac worlds, but is created on the

command line and is portable across all Unix versions.

To create a tar file lab2.tar that contains files WordGen.java, FreqList.java, and Table.java,

you can use this command:

tar -cvf lab2.tar WordGen.java FreqList.java Table.java

The “cvf” are three flags meaning “create”, “verbose”, and “file”. The ‘v’ tells tar to give you some

output describing what files it’s operating on, and the ‘c’ and ‘f’ indicates that tar should create a new

file with the specified file name for the archive.

You can extract the contents of a tar file with

5



tar -xvf lab2.tar

But beware! This will extract the files with no concern for whether it is overwriting files in your

directory. For this reason, I always create and changing into a brand new directory when extracting

tar files.

As in all labs, you will be graded on design, documentation, style, and correctness. Be sure to

document your program with appropriate comments, including a general description at the top of the

file, a description of each method with pre- and post-conditions where appropriate. Also use comments

and descriptive variable names to clarify sections of the code which may not be clear to someone trying

to understand it.

6


