Name:

1. (23 points) Short answers. Show your work and justify answers where appropriate.

. Free bonus points given in class. What is the answe

r given in class for the first question
on exam 27 (2 points)

. When is it advantageous to use a spl

ay tree instead of a regular binary search tree? (3
points)

/Q./A/ tree with n elements is both a min-heap and a binary search tree. What does it look
like? (3 points)

d. Which tree traversal would

you use to print an expression tree in human-readable form?
(2 points)

[n oider, becowe Thar is how we
hﬂj;(“'uj wnile foumn lus: 2,{“\5 is Pifnka’ o at3

e. Which tree traversal would you use to evaluate an expression tree? (2 points)

Post oider: ewaati e lefr sikhvee, Ten
Te jisht slhee g and Then Combine
T fesults

Name:

f. Given a SinglyLinkedList containing n elements, what is the complexity (Big O) of
removeFirst ()? of removeLast()? (4 points)

remont Finst : 0 (1)
emont Last: O(n) - we must haace whoe 5T
veach end

g. Given a DoublyLinkedList containing n elements, what is the complexity (Big O) of
removeFirst()? of removeLast()? (4 points)

emne hrse: o(r)

e (ast: 0 1) - W hat a wall rc{&nwe P occess
end i» O() bt

i. We applied sorting methods primarily to arrays and Vectors. Of the following sort
algorithms, which are most appropriate to sort a SinglyLinkedList: insertion sort, selection
sort, quicksort, merge sort? (3 points)

M bt guekst wodd wotk. QicksorT
reﬁv'ws [anden oteern F e o/wfl, which

s M Q’O‘W on g'lhjla, Lin/eed (553 ('PI
Get(inder) s o)).

T e Ne mog offivin, simee we
wld shll bt w Olnloga) time.

Name:

2. (15 points) A circular doubly linked list with four elements is represented as in the picture
below:

— T T3 T

Suppose we have an implementation of such a list, class CircularDoublyLinkedList,
which includes instance variables:

protected DoublyLinkedListElement head;
protected int count;

Relevant parts of the class DoublyLinkedListElement from structure are on page 6.

Consider the addLast () method of the CircularDoublyLinkedList class:

// pre: value is not null
// post: adds value to the tail of the list
public void addLast(Object value);

a. What special cases must be considered when writing this method? (5 points)

“when The head is ol (ie, De
lst s enphy)

Name:

b. Write Java code for this method. You need not replicate the pre- and post-conditions
specified on the previous page. You may not use addFirst() in your code. (10 points)

public void addLast(Object value) {

|\((,ﬂ{’ad';:ﬂ(/”) {
DLLE new Node= new DLLE (vabe)
hew ke, s Jrnt (nowhiode);
nwliode. & Proy (new Nele)
3 head = New Mode :
5 ele §
DLLE newlhde- Hew DUE (W))
new Mok. sar Mot (head) ;
new Mol . safrw(head.pfeviovscm
head. eavious 0. sot Mot (new M) ;
head. sefPMms(ﬂwM) :

:
Covnt

public class DoublyLinkedListElement {
protected Object data;
protected DoublyLinkedListElement nextElement;
protected DoublyLinkedListElement previousElement;

public DoublyLinkedListElement (Object v,
DoublyLinkedListElement next,
DoublyLinkedListElement previous) {

// post: constructs new element with list prefix referenced by

// previous and suffix referenced by next

data = v;

nextElement = next;

if (nextElement != null) nextElement.previousElement = this;
previousElement = previous;

if (previousElement != null) previousElement.nextElement = this;

public DoublyLinkedListElement(Object v) {

// post: constructs a single element
this(v,null,null);

}

public DoublyLinkedListElement next() {
// post: returns the element that follows this
return nextElement;

}

public DoublyLinkedListElement previous() {
// post: returns element that precedes this
return previousElement;

}

public Object value() {
// post: returns value stored here
return data;

}

public void setNext(DoublyLinkedListElement next) {
// post: sets value associated with this element
nextElement = next;

}

public void setPrevious(DoublyLinkedListElement previous) {
// post: establishes a new reference to a previous value
previousElement = previous;

}

Name:

3. (15 points) Recall that the Queue interface may be implemented using an array to store
the queue elements. Suppose that two int values are used to keep track of the ends of the
queue. We treat the array as circular: adding or deleting an element may cause the head or
tail to “wrap around” to the beginning of the array.

You are to provide a Java implementation of class CircularQueueArray by filling in the
bodies of the methods below. Note that there is no instance variable which stored the number
of elements current in the queue; you must compute this from the values of head and tail.

You may not add any additional instance variables. - . % ==
4 d Gueve i3 aphy € foud

public class CircularQueueArray { QW g ,(,” j}‘ M o M€ ‘r‘r
// instance variables Lot JWO(;--SO Wl reoA

protected int head, tail;

protected Object[] data; ' VﬂUS’d -ﬂ’bT n ﬂ'll¢3, fo

Gre p velvea
// constructor: build an empty queue of capacity n
public CircularQueueArray(int n) { i
Rl n+l.

etz < new Object [n+1]) —
D Jc
talf =05 _%Hfi)

head-0;

PRl
Prseat. pre (e 12D))

¥

// pre: queue is not fill
// post: adds value to the queue
public void enqueue(Object value) {

wt newTud = Cladt +1) % doto. longTh s
% dota [teil]: velie
fodl = new Tl

Name:

3. (continued)

// pre: queue is not empty

// post: removes value from the head of the queue

public Object dequeue() {)
o

ﬂsw PN ('/ it Epff'j 0y, "
it pewHead= (heod #1) % dww/a”’n')

Objed tmp: deta Chead];
head=new Head,
retvia fenp,

.

2

}

// post: return the number of elements in the queue
public int size() {

A (W*‘ M./@rgﬂ — headl) % data.forsTh

}

// post: returns true iff queue is empty
public boolean isEmpty() {

folvin $12(k=0,
}

// post: returns true iff queue is full
public boolean isFull() {

r@h/m S'ﬂc“‘-" Jajn,l-enyn- |

Name:

4. (15 points) The StackSort. Suppose you need to sort a stream of Comparable elements,
and the only data structure available to you is an implementation of the Stack interface
in the structure package (say, a StackList). The elements are available only through an
Iterator, so you must process each item as it is returned by the next() method of the
Iterator. The sort method should return a Stack containing the sorted elements, with the
smallest at the top of the stack. Please fill in the body of the method.

public static Stack StackSort(Iterator iter) {
// pre: iter is an Iterator over a structure containing Comparables
// post: a Stack is returned with the elements sorted, smallest on top

Stacke data- new Shack 0);

While (il has Mewt OV)
Objed valve: ilet.next 0;
Slack Temp = New Stackc),

A de e while (| dut. isEopty ¢) 8 dtn.poek O, (opmeT, (vale) €0D

e Tep. push (daka. pop O);
3

deta., push (vale);

s oA while (lHewp. isEmphy 0y) {

 dafa. push (leep.pop €3);
dam.) 3

Rtua duta

Name:

5. (16 points) Recall the definition of a min-heap, a binary tree in which each node is
smaller than any of its descendants. For the rest of this question, we presume the Vector
implementation of heaps (class VectorHeap). Consider the following tree, which is a min-

heap.

a. Show the order in which the elements would be stored in the Vector underlying our
VectorHeap. (4 points)

Lz |33 |s] |w Z3:'slsr31‘f‘/
0 1 2 3 45 6 7 8 9 10 11

b. Show the steps involved in adding the value 4 to the heap. Use drawings of the tree, not
the vector. (4 points)

N

/
P < ’3K S z y
N\ / . VAN
g 3 8Ix 3 g/ 3 13 3%
/ 3 /s~ 0 /0
2w 2 T8 ¥

10

Name:

c. Using the original tree (not the one with the 4 added), show the steps involved in removing
the minimum value of the heap. (4 points)

« /\) / u B ST W
zr’/zsa s J }#\%

d. Why is the VectorHeap implementation of a priority queue better than one that uses a
linked list implementation of regular queues, modified to keep all items in order by priority?
Hint: Your answer should compare the complexities of the add and remove operations. (4

points)
add Jremive ae both OClogs) fo Vech foop

add wodd be 0() o mainfain oyo(&fngr
en a Cinped LisT ihf/mpfwr’r»,

11

Name:

6. (18 points) Suppose we have a BinaryTree that contains only Comparable values.

a. It is often useful to find the minimum and maximum values in the tree. Implement the
method maximum as a member of class BinaryTree. Relevant sections of BinaryTree. java
from the structure package are included on pages 14-16 to guide you. Your method should
return the Comparable that is the maximum value in the tree. It should return null if called
on an empty tree. (6 points)

public Comparable maximum() {
// pre: the values in this tree are all Comparable
// post: the maximum value in the tree is returned

it CisGuphy O) § etvta avly 3

QWM ’eﬂfmah ,tér Mayimum (),
Cmpm‘& figtw%p ﬁjlsf. Motksmom () ;

(ovposakle maX: v valire ()
it (max. copaeTo (left-Max)e 0) {maxs o)t Max; 3
¢ (Max. copuado(/igiMax) ¢ 0) § maysvighrta; 3

Velvin - may;

b. What is the worst-case complexity of maximum on a tree containing n values? (2 points)

O(n) - we must Jook oA ey
Valit .

c. What is the complexity of maximum on a full tree containing n values? (2 points)

O(n) - be?hg ((/” 6!0@”';
(50476 qng'ﬂning_

12

Name:

d. Consider the following method, which I propose as a member of class BinaryTree:

public boolean isBST() {
// post: returns true iff the tree rooted here is a binary search tree
if (this == EMPTY) return true;
return left().isBST() && right().isBST();

}

This method will not always return the correct value. Explain why, then provide a correct
method. You may use minimum () and maximum() from part (a), as well as any other methods
of BinaryTree. (6 points)

public boolean isBST() {

i (isEwmpty0) {
rehvin TR
T bse £

) Ms logtr vales rebvin /(({kam., 0,‘3"9" 4‘ 'lﬁ.”ﬁ#vn“.(ﬁpﬂro {VMO)? Q
in lepr sbhee !

» b ,' .m' % 5 (ulw() ff)
Qﬂt%m {4 /((rigbt. pinjawen (3=)l F 0T 0.copaclo))
Oler ke iser g4 et i<BST)
@)y Mggfr. H 94 v, sBI)

3

e. In class BinaryTree, why is the setLeft() method public, but the setParent()
method is protected? (2 points)

To pest the cheat Lo vileting Tt vovir Thol

a noded |eft Chibli parset i The noele: s
13 M,[g‘qn. M()" .

public class BinaryTree {
protected Object val; // value associated with node
protected BinaryTree parent; // parent of node
protected BinaryTree left; // left child of node
protected BinaryTree right; // right child of node
// The unique empty node
public static final BinaryTree EMPTY = new BinaryTree();

// A one-time constructor, for constructing empty trees.
private BinaryTree() {
val = null; parent = null; left = right = this;

}

// Constructs a tree node with no children. Value of the node
// is provided by the user
public BinaryTree(Object value) {
val = value; parent = null; left = right = EMPTY;
}

// Constructs a tree node with no children. Value of the node

// and subtrees are provided by the user

public BinaryTree(Object value, BinaryTree left, BinaryTree right) {
this(value);
setLeft (left);
setRight (right);

// Get left subtree of current node
public BinaryTree left() {

return left;
}

// Get right subtree of current node
public BinaryTree right() {
return right;

}

// Get reference to parent of this node
public BinaryTree parent() {
return parent;

}

// Update the left subtree of this node. Parent of the left subtree
// is updated consistently. Existing subtree is detached
public void setLeft(BinaryTree newLeft) {

if (isEmpty()) return;

if (left.parent() == this) left.setParent(null);

14

left = newleft;
left.setParent (this);

// Update the right subtree of this node. Parent of the right subtree
// is updated consistently. Existing subtree is detached
public void setRight(BinaryTree newRight) {

if (isEmpty()) return;

if (right.parent() == this) right.setParent(null);

right = newRight;

right.setParent(this);

// Update the parent of this node
protected void setParent(BinaryTree newParent) {
parent = newParent;

I

// Returns the number of descendants of node
public int size() {

if (this == EMPTY) return 0;

return left().size() + right.size() + 1;

// Returns reference to root of tree containing n
public BinaryTree root() {

if (parent() == null) return this;

else return parent().root();

// Returns height of node in tree. Height is maximum path
// length to descendant
public int height() {

if (this == EMPTY) return -1;

return 1 + Math.max(left.height(),right.height());

// Compute the depth of a node. The depth is the path length
// from node to root
public int depth() {

if (parent() == null) return O;

return 1 + parent.depth();

// Returns true if tree is full. A tree is full if adding a node
// to tree would necessarily increase its height
public boolean isFull() {

15

if (this == EMPTY) return true;
if (left() .height() != right() .height()) return false;
return left().isFull() && right().isFull();

by

// Returns true if tree is empty.

public boolean isEmpty() {
return this == EMPTY;

}

// Return whether tree is complete. A complete tree has minimal height
// and any holes in tree would appear in last level to right.
public boolean isComplete() {
int leftHeight, rightHeight;
boolean leftIsFull, rightIsFull, leftIsComplete, rightIsComplete;
if (this == EMPTY) return true;
leftHeight = left().height();
rightHeight = right().height();
leftIsFull = left().isFull();
rightIsFull = right().isFull();
leftIsComplete = left().isComplete();
rightIsComplete = right().isComplete();

// case 1: left is full, right is complete, heights same
if (leftIsFull &% rightIsComplete &%

(leftHeight == rightHeight)) return true;
// case 2: left is complete, right is full, heights differ
if (leftIsComplete && rightIsFull &&

(leftHeight == (rightHeight + 1))) return true;
return false;

// Return true iff the tree is height balanced. A tree is height
// balanced iff at every node the difference in heights of subtrees is
// no greater than one
public boolean isBalanced() {
if (this == EMPTY) return true;
return (Math.abs(left().height()-right().height()) <= 1) &&
left().isBalanced() && right().isBalanced();

// Returns value associated with this node
public Object value() {
return val;

¥

16

