
Lab 6
Due 10am, Wednesday 6 April

Handout 8
CSCI 136: Spring, 2005

14 March

P.S. It’s Just a Stack

1 Short Answers
Bring answers to the following questions to class on Wednesday.

9.3
9.4
9.5

2 Lab Program
This week we will implement a small portion of the stack-based language Postscript, a language de-
signed to describe graphical images. When you create a Postscript file with gnuplot or other tools, you
actually create a file that contains a program, written in this language. A printer or viewer interprets
that program to render the image described by the file. The lab is described in Section 9.5 of Bailey.

Read the assignment and prepare a design for the program before Wednesday’s class so
that you can start working right away.

3 Notes
1. The starter files and javadoc documentation are on the handouts page. Familiarize yourself with

these files before starting to work on your lab.

2. Make use of the functionality of the classes you are given. Be careful not to spend time developing
code that is already there!

3. Name your interpreter class Interpreter. You should only need to modify the Interpreter
class, and nothing else. Your program should read commands from standard input. You can also
redirect input from a file by using a command like java Interpreter < program.ps.

4. Make your main method very short. All it should do is create an Interpreter object and tell
it to start parsing the postscript program presented at the command line. Create a method
interpret that takes a single parameter of type Reader and processes the PostScript tokens
returned by that Reader.

5. Develop your interpret method incrementally. Get your simple push, pop, and pstack opera-
tions working, then move on to the arithmetic operators, and finally the definition and usage of
symbols.

6. Your program should throw exceptions when it encounters invalid input, but these should contain
meaningful error messages. You can use Assert.condition() and Assert.fail() for this.

7. Implementing the basic operations– pstack, add, sub, mul, div, dup, exch, eq, ne, def, pop,
quit, and ptable– will allow you to earn 18 out of 20 points. You can earn the last two points
by implementing the extensions outlined in thought questions 3, 4, and 5. In particular, you
should implement procedure definitions and calls, and the if instruction. These extensions may
require a little thought, but ought to be straight-forward to implement if you have designed your
interpreter engine well.

1



8. You can use the gs interpreter on the computers in the lab if you want try out the commands
yourself. Type the command gs -dNODISPLAY. This will give you a text-only postscript inter-
preter. You can type commands at the prompt as they appear in the lab assignment. Type quit
to exit the interpreter.

4 Deliverables
Turn in your well-documented Interpreter.java file. You do not need to answer the thought ques-
tions this week.

2


