CS | 34:
Files & List Comprehensions

Announcements & Logistics

Homework 4 will be released today at noon, due next Mon at 10 pm
Lab 3 due today 10 pm/ tomorrow |0 pm
Any questions!
Mountain Day coming up (?)
Herd meetings will happen regardless of Mountain Day

Lots of help hours! Come by to work on the lab

Today's hours: 12:30-2:30 (Shikha), |-3 pm (Jeannie), 4-6 pm and /-1 1 (TAS)

Do You Have Any Questions?

L ast [Ime

Learned about list accumulations

Discussed nested for loops

Looked at ranges as an easy way to generate numerical sequences
Learned about adding items to lists using + and append()

Summarized important string and list methods and operations

Summarizing Mutabllity in Strings vs Lists

Strings are immutable

Once you create a string, It cannot be changed!

All functions that we have seen on strings return a new string and do

not modify the original string

Lists are mutable

Lists are mutable (or changeable) sequences

You can concatenate items to a list using +, but this does not change

the list

You can append rtems using append() method, and this does change
the list

Jloday's Plan

Discuss file reading using lists and strings

Learn about list comprehensions as a way to simplify list
accumulations

Introduce lists of lists (aka 2D lists)

Reading Data from Files

Reading Files: Open

open(filename, mode) returns a file object
filename is a path to a file as a string
mode is a string where
'r' - open for reading (default)
We will only look at this mode today
Technically when you open a file, you must also close it to avoid memory leaks

To avoid writing code to explicitly open and close files, we will use the with open
. @S code block, which keeps the file open within it, and closes the file after
existing the block

Today's focus: iterable file objects

We will see how to iterate over the lines of a file just as we iterated over
strings and lists in previous lectures

Reading Files:with .. as

with open(filename) as inputFile:

do scnething with file

Variable name for your file object

Path to file on computer as a string

Note. (syntax) Indentation defines the body of the
with block where the file Is open

f = open (filename, 'r')
... file operations involving £ ...
f.close()

@

with open (filename, 'r') as £:
... file operations involving £ ...
£ implicitly closed
when with is done.

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

terating over Lines In a rile

Withinawith open(filename) as inputFile: block we
can rterate over the lines in the file just as we would iterate over any
sequence such as lists, strings, or ranges

A line in the file is determined by the special newline character '\n’

For us visually, a line has the regular meaning

Example: There is a text file prideandprejudice. txt within a
directory textfiles, so we can iterate and print each line:

with open('textfiles/prideandprejudice.txt') as book:
for line in book:

print(line)
Variable name for your file object

Path to file on computer as a string

String Methods In File Reading

- When iterating over the lines of a file, the line variable will be a string
ending in a special newline character '\n’

* How can we remove any leading/trailing white space (including \n’)?

+ line.strip()

* Suppose the line In the file Is a space-separated sequence of words.
How can we collect each word in a list!

+ line.split()

* Suppose the line in the file Is a comma-separated sequence of words.
How can we remove commas and create a single "big"’ string with words
separated by spaces instead of commas!

- ' '.join(line.split(',"))

Usetul List Methods: extend()

* We have already discussed myL1st.append(1tem) for adding items
to a list one at a time

- myList.extend([itemList]): appends all the items i
1temL1st to the end of myL1ist

« Method modifies the list it Is called on, does not create a new list!
Example.
>>> myList = [1, 7, 3, 4, 5]

>>> myList.extend([6, 8]) # no return val

>>> myList
[1, 7, 3, 4, 5, 6, 8]

* Wil see more list methods in the coming lectures, and continue to discuss
mutability iIn more detall

Useful List Methods: count()

- myList.count([item]): counts and returns the number (an
int) of times 1tem appears in myL1st

+ Method does not modify list it is called on
Example.

>>> myList = [2, 3, 2, 1, 2, 4, 1]
>>> ¢ = myList.count(2)

>>> C

3

>>> myList

[2, 3, 2, 1, 2, 4, 1]

Analyzing Data Files

- How many words are in Pride and Prejudice?

- Can we count specific words!

In [1]: wordList = []
with open('textfiles/prideandprejudice.txt') as book:
for line in book:
wordList.extend(line.strip().split())

len(wordList) \\\\\\

. : .
Out[1l]: 122089 What is this doing!?

In [2]: # number of times a word is in the book?
wordList.count('love')

Out[2]: 91

In [3]: wordList.count('dear’)

Out[3]: 158

More Data Analysis

+ Suppose we want to simply print each line in the file

lets try the same example again with .strip()
filename = 'textfiles/classNames0l.txt' # 10 am section
with open(filename) as roster: # roster: name of file object
for line in roster:
print(line.strip())
file is implicitly closed here

* Prints in lastName,firstName format

- How do we create a list of firstName (M) lastName'?

students = [] # initialize
with open(filename) as roster: # roster: name of file object
for line in roster:
fullName = line.strip().split(',"')
firstName = fullName[1l]
lastName = fullName[0]
print(firstName lastName)
students.append(firstName + ' ' + lastName)

| Ist Patterns: Map & Filter

- When processing lists, there are common patterns that appear

Mapping. [terate over a list and return a new list that results from
performing an operation on each element of a given list

+ E.g, take a list of integers nuUML1St and return a new list
which contains the square of each number in numL1st

- Filtering. lterate over a list and return a new list that results from
keeping only those elements of the list that satisfy some condition

+ E.g, take a list of integers nuML 1St and return a new list which
contains only the even numbers in numL1st

- Python allows us to implement these patterns succinctly using list
comprehensions

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

List Comprehensions

List Comprehension for Mapping (perform an op on each element)

newSequence = [expression for i1tem 1n sequence]

List Comprehension for Filtering (only keep some elements)

newSequence = [1tem for i1tem 1n sequence 1f conditional]

Important points:

List comprehensions always start with an expression (even a variable
like “item” Is an expression)

- We never use append() in list comprehensions

- We can combine mapping and filtering into a single list comprehension:

hewSequence = [expression for item in sequence 1if]

List Comprehensions: Mapping & Filtering

newSequence = [expression for 1item sequence 1f conditional]

result = []

Task: Extract even numbers (for n in range(10) :)
from a range and create a (if n%2 == 0:)

list of their squares. result.append((n**2))
re#ult

Using a list compreh

result = nf*Z(?or n in range(lOiXif n%2 == dﬂ

expression item sequence conditional

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

More Data Analysis

Let's use some of the functions we've written recently and list
comprehensions to answer some more questions about data

(See Jupyter notebook!)

Common File Type: CSVs

A CSV (Comma Separated Values) file Is a type of plain text file that
stores “tabular” data

Fach row of a table is a line In the text file, with each column on the row
separated by commas

This format is the most common import and export format for
spreadsheets and databases.

Name Age CSV form:
Harry v Name,Age

Harry, 14
Hermoine 14

Hermoine, 14
Dumbledore 60 Dumbledore, 60

Working with C5Vs

- Let’s start by looking at our data file;

filename = 'csv/roster0l.csv' # 10 am section
with open(filename) as roster:
for student in roster:
print (student.strip())

Albright,Nicole M., 25AAA
Bah,Maymouna, 25AAA
Bathum,Blake C.,24AAA
Breibart,Jonathan S.,24AAA
Cardonick,Alex M., 23AAA
Chai,Rachel H.,25AAA
Collier,Grace S.,25AAA
Confoy,Will,24AAA
Constanza,Ruben E.,23AAA
Fang,Bruce,25AAA
Galvez-Cepeda,Daniela, 24AAA
Gashi,Anesa,25AAA
Giove,Michael J.,24AAA
Goldstein,Maya R.,25AAA

Working with C5Vs

- Using a list comprehension instead:

with open(filename) as roster:
allStudents = [line.strip().split(',') for line in roster] # list comprehension

allStudents # list of lists

[['Albright', 'Nicole M.', '25AAA'],
['Bah', 'Maymouna', '25AAA'],
['Bathum', 'Blake C.', '24AAA'],
['Breibart', 'Jonathan S.', '24AAA'],
['Cardonick', 'Alex M.', '23AAA'],
['Chai', 'Rachel H.', '25AAA'],
['Collier', 'Grace S.', '25AAA'],
['Confoy', 'Will', '24AAA'],
['Constanza', 'Ruben E.', '23AAA'],
['Fang', 'Bruce', '25AAA'],
['Galvez-Cepeda', 'Daniela’, '24AAA'],
['"Gashi', 'Anesa', '25AAA'],
['Giove', 'Michael J.', '24AAA'],
['Goldstein', 'Maya R.', '25AAA'],

| Ists of Lists!

VWe have already seen lists of strings
We can also have lists of lists!
Sometimes called a 2D (two dimensional) list
Suppose we have a list of lists of strings
word = list[a][b]
a Is Index into “outer’ list (identifies which list we want)

b In Index into “inner’” list (1dentifies the element within the list we
want)

Let's see an example!

