
CS 134:
Files & List Comprehensions

Announcements & Logistics
• Homework 4 will be released today at noon, due next Mon at 10 pm

• Lab 3 due today 10 pm/ tomorrow 10 pm

• Any questions?

• Mountain Day coming up (?)

• Herd meetings will happen regardless of Mountain Day

• Lots of help hours! Come by to work on the lab

• Today's hours: 12:30-2:30 (Shikha), 1-3 pm (Jeannie), 4-6 pm and 7-11 (TAs)

Do You Have Any Questions?

Last Time
• Learned about list accumulations

• Discussed nested for loops

• Looked at ranges as an easy way to generate numerical sequences

• Learned about adding items to lists using + and append()

• Summarized important string and list methods and operations

Summarizing Mutability in Strings vs Lists

• Once you create a string, it cannot be changed!

• All functions that we have seen on strings return a new string and do

not modify the original string

• Lists are mutable (or changeable) sequences

• You can concatenate items to a list using +, but this does not change
the list

• You can append items using append() method, and this does change
the list

Lists are mutable

Strings are immutable

Today’s Plan
• Discuss file reading using lists and strings

• Learn about list comprehensions as a way to simplify list
accumulations

• Introduce lists of lists (aka 2D lists)

Reading Data from Files

Reading Files: Open
• open(filename, mode) returns a file object

• filename is a path to a file as a string

• mode is a string where

• 'r' - open for reading (default)

• We will only look at this mode today

• Technically when you open a file, you must also close it to avoid memory leaks

• To avoid writing code to explicitly open and close files, we will use the with open
… as code block, which keeps the file open within it, and closes the file after
existing the block

• Today’s focus: iterable file objects

• We will see how to iterate over the lines of a file just as we iterated over
strings and lists in previous lectures

Reading Files: with … as
with open(filename) as inputFile:

do something with file

Image Source: (http://cs111.wellesley.edu/spring19)

Note. (syntax) Indentation defines the body of the
with block where the file is open

Path to file on computer as a string
Variable name for your file object

http://cs111.wellesley.edu/spring19

Iterating over Lines in a File
• Within a with open(filename) as inputFile: block, we

can iterate over the lines in the file just as we would iterate over any
sequence such as lists, strings, or ranges

• A line in the file is determined by the special newline character '\n’
• For us visually, a line has the regular meaning
• Example: There is a text file prideandprejudice.txt within a

directory textfiles, so we can iterate and print each line:

Path to file on computer as a string

Variable name for your file object

String Methods in File Reading
• When iterating over the lines of a file, the line variable will be a string

ending in a special newline character '\n’

• How can we remove any leading/trailing white space (including ‘\n’)?

• line.strip()

• Suppose the line in the file is a space-separated sequence of words.
How can we collect each word in a list?

• line.split()

• Suppose the line in the file is a comma-separated sequence of words.
How can we remove commas and create a single “big” string with words
separated by spaces instead of commas?

• ' '.join(line.split(','))

Useful List Methods: extend()
• We have already discussed myList.append(item) for adding items

to a list one at a time
• myList.extend([itemList]): appends all the items in
itemList to the end of myList

• Method modifies the list it is called on, does not create a new list!

Example.

>>> myList = [1, 7, 3, 4, 5]

>>> myList.extend([6, 8]) # no return val

>>> myList

[1, 7, 3, 4, 5, 6, 8]
• Will see more list methods in the coming lectures, and continue to discuss

mutability in more detail

Useful List Methods: count()
• myList.count([item]): counts and returns the number (an

int) of times item appears in myList
• Method does not modify list it is called on

Example.

>>> myList = [2, 3, 2, 1, 2, 4, 1]

>>> c = myList.count(2)

>>> c

3

>>> myList

[2, 3, 2, 1, 2, 4, 1]

Analyzing Data Files
• How many words are in Pride and Prejudice?
• Can we count specific words?

What is this doing?

More Data Analysis
• Suppose we want to simply print each line in the file

• Prints in lastName,firstName format
• How do we create a list of ‘firstName (MI) lastName’?

List Patterns: Map & Filter
• When processing lists, there are common patterns that appear

• Mapping. Iterate over a list and return a new list that results from
performing an operation on each element of a given list

• E.g., take a list of integers numList and return a new list
which contains the square of each number in numList

• Filtering. Iterate over a list and return a new list that results from
keeping only those elements of the list that satisfy some condition

• E.g., take a list of integers numList and return a new list which
contains only the even numbers in numList

• Python allows us to implement these patterns succinctly using list
comprehensions

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

List Comprehensions

• Important points:
• List comprehensions always start with an expression (even a variable

like “item” is an expression)
• We never use append() in list comprehensions
• We can combine mapping and filtering into a single list comprehension:

List Comprehension for Mapping (perform an op on each element)

newSequence = [expression for item in sequence]

List Comprehension for Filtering (only keep some elements)

newSequence = [item for item in sequence if conditional]

newSequence = [expression for item in sequence if conditional]

List Comprehensions: Mapping & Filtering

Image Source: (http://cs111.wellesley.edu/spring19)

newSequence = [expression for item in sequence if conditional]

Task: Extract even numbers
from a range and create a

list of their squares.

Using a list comprehension:

expression item sequence conditional

http://cs111.wellesley.edu/spring19

More Data Analysis
• Let’s use some of the functions we’ve written recently and list

comprehensions to answer some more questions about data
• (See Jupyter notebook!)

Common File Type: CSVs
• A CSV (Comma Separated Values) file is a type of plain text file that

stores “tabular” data
• Each row of a table is a line in the text file, with each column on the row

separated by commas
• This format is the most common import and export format for

spreadsheets and databases.

CSV form:
Name,Age
Harry,14
Hermoine,14
Dumbledore,60

Working with CSVs
• Let’s start by looking at our data file:

Working with CSVs
• Using a list comprehension instead:

Lists of Lists!
• We have already seen lists of strings
• We can also have lists of lists!
• Sometimes called a 2D (two dimensional) list
• Suppose we have a list of lists of strings
• word = list[a][b]

• a is index into “outer” list (identifies which list we want)
• b in index into “inner” list (identifies the element within the list we

want)
• Let’s see an example!

