CS | 34;

| Ists anc

| 00

DS (2)

Announcements & Logistics

Homework 3 is due tonight 10 pm
Lab 3 is today and tomorrow, due Wed |0 pm/ Thurs 10 pm

Lab 3 is a collection of word puzzles: can use our knowledge of strings, functions
and loops to solve them

Steve Freund will be In Kelly's lab today
I you are having problems with anything, please come see us during office hours
Slight changes in office hours this week:
Shikha's office hours today 4=-6 pm (instead of 3-5 pm)
Kelly's office hours tomorrow 4:30-6 pm instead of [hursday

Always refer to course calendar for updated hours!

Do You Have Any Questions!?

Lab Grading Guidelines

A+ : An absolutely perfect submission (both in terms of correctness and
style) that goes above and beyond our expectations.

A : A submission that meets every requirement and has no mistakes
(even style Is perfect!)

A- : A submission where everything works with | -2 minor mistakes/
stylistic concerns.

B+ . A submission that has several minor problems that add up.

B . A submission that has problems serious enough to fall short of the
requirements for the assignment.

C : A submission that has extremely serious problems, but nonetheless
shows some effort and/or understanding.

D : A submission that shows little effort and does not represent passing
work.

Last Time and Lab 3 Prelab Video

Reviewed Iterating over sequences with for loops

Used accumulation variables to collect "items” from sequences,
e.g,, vowel sequences, counters, etc

Introduced new sequence: lists

Learned how to index; slice, iterate over lists just like we did with
strings

Example: wordStartEnd
Learned about doctests in Python and importing modules (prelab video):

Another way to test functions: embed interactive python test cases
into docstrings of our functions

all__ special variable

Jloday's Plan

Gain more experience with iterating over lists

Learn how to accumulate in and return a new list containing items
with interesting properties from our original list

Introduce nested for loops

Discuss range data types and ways to iterate over numerical
sequences

Summarize important string, list, and sequence operations

Recap: wordStartEnd

- Write a function that iterates over a given list of words wordList,

and returns a (new) list containing all the words in wordList that
start and end with the same letter (ignoring case).

def wordStartEnd(wordList):

Takes a list of words and returns a list of words in it
that start and end with the same letter'''

initialize accumulation variable (of type list)
result = []

for word in wordList: # iterate over 1list

#check for empty strings before indexing
if len(word) != O0:
if word[0].lower() == word[-1].lower():
result += [word] # concatenate to resulting list
return result # notice the indentation of return

Recap: wordStartEnd

- Write a function that iterates over a given list of words wordList,

and returns a (new) list containing all the words in wordList that
start and end with the same letter (ignoring case).

def wordStartEnd(wordList): Accumulating in a list.

'''"Takes a list of words and returns a list ¢ Always initialize our

that start and end with the same letter''' accumulation variable before

initialize accumulation variable (of type . we enter |00p.
result = [] — : : : , f _ -

for word in wordList: # iterate over 1list

#check for empty strings before indexing
if len(word) != O0:
if word[0].lower() == word[-1].lower():
result += [word] # cese———— . .
return result # notice the indentation of r¢ List concatenation

Fxercise: palindromes

- Write a function that iterates over a given list of strings sList, and
returns a (new) list containing all the strings in sList that are
palindromes (l.e., read the same backward and forward).

def palindromes(sList):
''"'Takes a list of words and returns a new list of words comprised
of words from the original list that are palindromes'''
pass

>>> palindromes(['Anna', 'banana', 'kayak', 'rigor', 'tacit', 'hope'])
["Anna’', 'kayak']

>>> palindromes(['1313', '1110111', '0101'])

["1110111"']

>>> wordStartEnd(['Level’', 'Stick', 'Gag'])

['Level', 'Gag']

Fxercise: palindromes

- Step by step approach (organize your work):

» Go through every word in wordList

» Check if word is same forward and backwards

» I true, we need to collect this word (remember It for later!)
» Else, just go on to next word

- [akeaway: need a new list to accumulate desirable words

* Break down bigger steps (decomposition)

- How do we test if word is same forward and backwards:
» (Can use slicing with optional step [::-1]

» Think about corner cases: what If string Is empty? what about case!

Fxercise: palindromes

- Write a function that iterates over a given list of strings sList, and
returns a (new) list containing all the strings in sList that are
palindromes (l.e., read the same backward and forward).

def palindromes(sList):
''"'Takes a list of words and returns a new list of words comprised
of words from the original list that are palindromes'''
initialize accumulation variable (of type list)
result = []
for word in sList: # iterate over list
wLower = word.lower() #ignore case
if wLower[::-1] == wLower: # [::-1] returns wLower in reverse
result += [word] # concatenate to resulting list, notice []
return result

Nested Loops

A for loop body can contain one (or more!) additional for loops:

- (Called nesting for loops

+ Example: What do you think is printed by the following Python code!?

What does this do?

def mysteryPrint(wordl, word2):
"""Prints something

for charl in wordl:

for char2 in word2:

print (charl, char2)

mysteryPrint('123', 'abc')

In [9]: # What does this do?

def mysteryPrint(wordl, word2):
Prints something"""
for charl in wordl:
for char2 in word2:
print (charl, char2)

In [11]: mysteryPrint('123', 'abc')
l a charl = 1 char2 = a
l1Db char2 = Db
1 ¢ char?2 = ¢
2 a charl = 2 char2 = a
2 b char2 = b
2 C charZ = c
3 a charl = 3 char2 = a
3 b charZ2 = b
3 ¢ char?2 = ¢

Nested Loops

- Exercise: VWhat is printed by the nested loop below:

What does this print?

for letter in ['b','d’','r', 's']:
for suffix in ['ad’', 'ib',
print(letter + suffix)

ump ']

In [12]): # What does this print?

for letter in ['b','d','r','s']:
for suffix in ['ad', 'ib',
print(letter + suffix)

ump ']:

bad
bib
bump
dad
dib
dump
rad
rib
rump
sad
sib
sump

A New lype of Sequence: Range

Python provides an easy way to iterate over numerical sequences using
ranges, another sequence data type

* When the range() function is given two integer arguments, it returns a
range object of all integers starting at the first and up to, but not including,
the second; If the first integer is O, it may be omitted.

To see the values included in the range, we can pass our range to the
11st() function which returns a list of them

In [1]: range(0,10) In [3]: list(range(0, 10))

Out[1l]: range(0, 10) Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [2]: type(range(0, 10)) In [4]: list(range(10))

Out[2]: range Out[4]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

A New lype of Sequence: Range

- Python provides an easy way to rterate over numerical sequences using
ranges, another sequence data type

* When the range() function is given two integer arguments, it returns a

range object of all integers starting at the first and up to, but not including,
the second; If the first integer is O, it may be omitted.

» To see the values included in the range, we can pass our range to the
list(> ~ ¢ Lo list of them
‘ A range is a type of
sequence in Python (like
string and list)

To see elements in range, pass
range to list() function

In [1]: range(0,10) In [3]: list(range(0, 10))

Out[3]: [0, 1, 2, 3 First argument omitted,

Out[1l]: range(0, 10) defaults to 0
efaults to

In [2]: type(range(0, 10)) In [4]: list(range(iO))

Out[2]: range Out[4]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Loops and Ranges to Print Patterns

Sometimes we might use a for loop, not to rterate over a sequence, but just
to repeat a task over and over. The following loops print a pattern to the
screen. (Look closely at the indentation!)

what does this print? # what does this print?

for 1 in range(5): for i in range(5):
print('S$S' * 1) print('S' * 1)

for j in range(5): for j in range(i):
print('*' * j) print('*' * 1)

What are the values of i
and j???

terating Over Ranges

what does this print? # what does this print?

for 1 in range(5): for i in range(5):
print ('S’ * 1) print('S' * 1)

for j in range(5): for j in range(i):

print('*"' * j) print('*"' * 1)

terating Over Ranges

what does this print? # what does this print?
for 1 in range(5): for i in range(5):
print ('S’ * 1) print ('S’ * i)
for j in range(5): for j in range(i):
print('*"' * j) print('*"' * 1)
1 =20 1 =0
$ 1=1 $ i=1 i, not j!
$S i=2 * j =0
59 b= $$ i=2
$SSS 1 =4 * * J =20
i=0 * % J =1
* j =1 S$S i=3,
* % j =2 * % % J.=®
* % % j =3 * & % =1
* % % %] =4 il] =2
SSS 1 =4
* % * %] =0
* % % %] =1
* % % % J=2
* % % % j =3

Loops and Ranges to Print Patterns

- When loop variable is not needed In the body of the loop, we can use
_ as the loop variable:

for _ in range(10):
print('Hello World!")

World!
World!
World!
World!
World!
World!
World!
World!
World!
World!

O O0OO0OOOOOOO

| | | | | | | | | |
® o® ® ® ® ® ® ® d® D

sSummary:
List Operations (so far)

Moditying Lists

- Lists are mutable structures which means we can update them (delete
things from them, add things to them, etc.)
- We have looked at list concatenation (using +) which creates a new
list and does not modify any existing list

* Important point: Concatenating to a list returns a new list!
- We can also append to a list, which adds items by modifying the
existing list

- Important point: Appending to a list modifies the existing list!

+ We can use the list method myList.append(item) that

modifies the list myL1ist by adding 1tem to it at the end

- Often more efficient to append rather than concatenate!

Appending to a List

+ Here are a few examples that show how to use the list append()

method to add ritems to the end of an existing list
In [8]: numList = [1, 2, 3, 4, 5]

In [9]: numList + [6]

out[9]: [1, 2, 3, 4, 5, 6]

In [10]: numList # numList has not changed

Out[10]: [1, 2, 3, 4, 5]
In [12]: numList.append(6)

In [14]: numList # numList has been updated to include 6

out[14]: [1, 2, 3, 4, 5, 6]

list() Function

- list () function, when given another sequence (range or string), returns
a list of elements in the sequence

- Let's review how 1t works with strings and ranges

In [1]: spell = "Avada Kedavra!"

In [2]: list(spell) # can turn a string into a list of its characters
Out[Z]: [lAl’ IVI’ lal, ldl’ lal,] l’ lKl’ leI, ldl, lal’ lvl, Irl’ lal, l!l]
In [16]: list(range(-10, 10))

out[16]: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [21]: list(range(3))

Out[21]: [0, 1, 2]

Summary:

String Operations and
Methods

Strings to Lists w/ split ()

- split() is used to convert strings to lists

- The split() string method splits strings at “spaces’(the default
separator) and returns a list of (sub)strings

- Can optionally specity other delimiters as well
In [5]: phrase = "What a lovely day"

In [6]: phrase.split()

Out[6]: ['What', 'a', 'lovely',6K 'day']

In [7]: newPhrase = "What a *lovely* day!" # multiple spaces or punctuations dont matter
In [8]: newPhrase.split()

Out[8]: ['What', 'a', '*lovely*', 'day!']

In [9]: commaSepSpells = "Impervius, Portus, Lumos, Reducio, Protego" #comma separated strings

In [10]: commaSepSpells.split(', ")

Out[10]: ['Impervius', Portus', Lumos', Reducio', Protego']

List to Strings w/ join()

- join() is a string method that converts lists to strings

- Given a list of strings, the join () string method, when applied to a
string char, concatenates the strings together with the string char
between them

In [11]: wordList = ['Everybody', 'is', 'looking', 'forward', 'to', 'the', 'weekend']
In [12]: '*'.join(wordList)

Out[1l2]: 'Everybody*is*looking*forward*to*the*weekend'

In [13]: ' '.join(wordList)

Out[13]: 'Everybody is looking forward to the weekend'

In [14]: ' '.join(wordList)

Out[l4]: 'Everybody is looking forward to the weekend'

Remove whitespace w/ strip()

+ The strip() string method strips away whitespace and new line (\n)

characters from the beginning and end of strings and returns a new
string

In [1]: word = " ** Snowy Winters ** !
In [2]: word.strip()

Out[2]: '#** Snowy Winters **'

In [8]: "\nHello World\n".strip()

Out[8]: 'Hello World'

String Methods in Action

word = 'Williams College' Returned value
word.split() ['Williams', 'College’]
word.upper() '"WILLIAMS COLLEGE'
word. lower() 'williams college’
word.replace('iams', 'eslley') 'Willeslley College'
word.replace('tent', 'eselley') 'Williams College'
newWord = ' Spacey College '

newWord.strip() 'Spacey College'

myList = ['Williams', 'College']

'.join(myList) 'Williams College'

Remember: None of these operations change/affect the original
string. They all return a new string!

Even More String Functions!

- word.find(s)

» Return the first (or last) position (index) of string s in word. Returns
-1 1f not found.

- char.isspace()

 Returns True if char is not empty and char is composed of white
space (or lowercase, uppercase, alphabetic letters, digits, or erther

letters or digits).

+ Can also do: islower(), isupper(), isalpha(),
isdigit(), disalnum().

- word.count(s)

» Returns the number of (non-overlapping) occurrences of s in word

+ Many more: see pydoc3 str

Summarizing Mutabllity in Strings vs Lists

Strings are immutable

Once you create a string, It cannot be changed!

All functions that we have seen on strings return a new string and do

not modify the original string

Lists are mutable

Lists are mutable (or changeable) sequences

You can concatenate items to a list using +, but this does not change

the list

You can append rtems using append() method, and this does change
the list

Summary: Sequence Operations

(Strings, Lists, Ranges)

Operation R

X in seq

True if an item of seq is equal to x

x not in seq

False if an item of seq is equal to x

seql + seq2

The concatenation of seql and seq2*

seq*n, n*seq

n copies of seq concatenated

seq[i]

1’th item of seq, where origin is 0

seq[i:]]

slice of seq from i to j

seq[i:]:k]

slice of seq from 1 to j with step k

len(seq) length of seq
min(seq) smallest item of seq
max(seq) largest item of seq

* Concatenation Is not supported on range objects

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

