
CS 134: 
Lists and Loops (2)



Announcements & Logistics
• Homework 3 is due tonight 10 pm

• Lab 3 is today and tomorrow, due Wed 10 pm/ Thurs 10 pm

• Lab 3 is a collection of word puzzles:  can use our knowledge of strings, functions 
and loops to solve them

• Steve Freund will be in Kelly’s lab today 

• If you are having problems with anything, please come see us during office hours

• Slight changes in office hours this week:

• Shikha's office hours today 4-6 pm (instead of 3-5 pm)

• Kelly's office hours tomorrow 4:30-6 pm instead of Thursday

• Always refer to course calendar for updated hours!

Do You Have Any Questions?



Lab Grading Guidelines
• A+  :   An absolutely perfect submission (both in terms of correctness and 

style) that goes above and beyond our expectations.
• A  :  A submission that meets every requirement and has no mistakes 

(even style is perfect!)
• A- :  A submission where everything works with1-2 minor mistakes/

stylistic concerns.
• B+ :   A submission that has several minor problems that add up.
• B   :  A submission that has problems serious enough to fall short of the 

requirements for the assignment.
• C   :   A submission that has extremely serious problems, but nonetheless 

shows some effort and/or understanding.
• D   :  A submission that shows little effort and does not represent passing 

work.



Last Time and Lab 3 Prelab Video
• Reviewed iterating over sequences with for loops

• Used accumulation variables to collect "items" from sequences, 
e.g., vowel sequences, counters, etc 

• Introduced new sequence:  lists
• Learned how to index, slice, iterate over lists just like we did with 

strings
• Example:  wordStartEnd

• Learned about doctests in Python and importing modules (prelab video):
• Another way to test functions:  embed interactive python test cases 

into docstrings of our functions
• __all__ special variable



Today’s Plan
• Gain more experience with iterating over lists

• Learn how to accumulate in and return a new list containing items 
with interesting properties from our original list

• Introduce nested for loops 

• Discuss range data types and ways to iterate over numerical 
sequences 

• Summarize important string, list, and sequence operations



Recap:  wordStartEnd
• Write a function that iterates over a given list of words wordList, 

and returns a (new) list containing all the words in wordList that 
start and end with the same letter (ignoring case). 
 



Recap:  wordStartEnd
• Write a function that iterates over a given list of words wordList, 

and returns a (new) list containing all the words in wordList that 
start and end with the same letter (ignoring case). 
 

Accumulating in a list.
Always initialize our

accumulation variable before 
we enter loop.

List concatenation



Exercise:  palindromes
• Write a function that iterates over a given list of strings sList, and 

returns a (new) list containing all the strings in sList that are 
palindromes (i.e., read the same backward and forward). 
 



• Step by step approach (organize your work):
• Go through every word in wordList
• Check if word is same forward and backwards 

• If true, we need to collect this word (remember it for later!) 
• Else, just go on to next word

• Takeaway: need a new list to accumulate desirable words 

• Break down bigger steps (decomposition) 

• How do we test if word is same forward and backwards:  
• Can use slicing with optional step [::-1]

• Think about corner cases:  what if string is empty? what about case?

Exercise:  palindromes



• Write a function that iterates over a given list of strings sList, and 
returns a (new) list containing all the strings in sList that are 
palindromes (i.e., read the same backward and forward). 
 

Exercise:  palindromes



• A for loop body can contain one (or more!) additional for loops:
• Called nesting for loops

• Example:  What do you think is printed by the following Python code?

Nested Loops



char1 = 1 char2 = a

char2 = c
char2 = b

char1 = 2 char2 = a

char2 = c
char2 = b

char1 = 3 char2 = a

char2 = c
char2 = b



• Exercise:   What is printed by the nested loop below:

Nested Loops





A New Type of Sequence:  Range
• Python provides an easy way to iterate over numerical sequences using 

ranges, another sequence data type
• When the range() function is given two integer arguments, it returns a 

range object of all integers starting at the first and up to, but not including, 
the second;  if the first integer is 0, it may be omitted.

• To see the values included in the range, we can pass our range to the 
list() function which returns a list of them 



• Python provides an easy way to iterate over numerical sequences using 
ranges, another sequence data type

• When the range() function is given two integer arguments, it returns a 
range object of all integers starting at the first and up to, but not including, 
the second;  if the first integer is 0, it may be omitted.

• To see the values included in the range, we can pass our range to the 
list() function which returns a list of them 

A New Type of Sequence:  Range

A range is a type of 
sequence in Python (like 

string and list)

To see elements in range, pass 
range to list() function

First argument omitted, 
defaults to 0



• Sometimes we might use a for loop, not to iterate over a sequence, but just 
to repeat a task over and over.  The following loops print a pattern to the 
screen. (Look closely at the indentation!)

•  

Loops and Ranges to Print Patterns

What are the values of i 
and j???



Iterating Over Ranges



Iterating Over Ranges

i = 0
i = 1
i = 2
i = 3
i = 4
j = 0
j = 1
j = 2
j = 3
j = 4

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

i, not j!



• When  loop variable is not needed in the body of the loop, we can use 
_ as the loop variable:

for _ in range(10):
print('Hello World!')

Loops and Ranges to Print Patterns

Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!



Summary:
List Operations (so far)



Modifying Lists
• Lists are mutable structures which means we can update them (delete 

things from them, add things to them, etc.)
• We have looked at list concatenation (using +) which creates a new 

list and does not modify any existing list 
• Important point: Concatenating to a list returns a new list!

• We can also append to a list, which adds items by modifying the 
existing list

• Important point: Appending to a list modifies the existing list!
• We can use the list method myList.append(item) that 

modifies the list myList by adding item to it at the end
• Often more efficient to append rather than concatenate!



Appending to a List
• Here are a few examples that show how to use the list append() 

method to add items to the end of an existing list



list() Function
• list() function, when given another sequence (range or string), returns 

a list of elements in the sequence

• Let’s review how it works with strings and ranges



Summary:
String Operations and 

Methods



Strings to Lists w/ split()
• split() is used to convert strings to lists

• The split() string method splits strings at “spaces”(the default 
separator) and returns a list of (sub)strings

• Can optionally specify other delimiters as well



List to Strings w/ join()
• join() is a string method that converts lists to strings

• Given a list of strings, the join() string method, when applied to a 
string char, concatenates the strings together with the string char 
between them 



Remove whitespace w/ strip()
• The strip() string method strips away whitespace and new line (\n) 

characters from the beginning and end of strings and returns a new 
string



String Methods in Action

\

word = 'Williams College' 

word.split()                        ['Williams','College'] 

word.upper()                           'WILLIAMS COLLEGE' 

word.lower()                           'williams college' 

word.replace('iams', 'eslley')        'Willeslley College' 

word.replace('tent', 'eselley')       'Williams College' 

newWord = '   Spacey College   ' 

newWord.strip()                       'Spacey College' 

myList = ['Williams', 'College'] 

' '.join(myList)                      'Williams College' 

Remember: None of these operations change/affect the original 
string. They all return a new string!

Returned value



Even More String Functions!

\

• word.find(s) 
• Return the first (or last) position (index) of string s in word. Returns 

-1 if not found.
• char.isspace() 

• Returns True if char is not empty and char is composed of white 
space (or lowercase, uppercase,  alphabetic letters, digits, or either 
letters or digits).

• Can also do:  islower(), isupper(), isalpha(), 
isdigit(), isalnum().

• word.count(s) 
• Returns the number of (non-overlapping) occurrences of s in word

• Many more:  see pydoc3 str



Summarizing Mutability in Strings vs Lists

• Once you create a string, it cannot be changed!

• All functions that we have seen on strings return a new string and do 

not modify the original string 
 

• Lists are mutable (or changeable) sequences

• You can concatenate items to a list using +, but this does not change 
the list

• You can append items using append() method, and this does change 
the list

Lists are mutable

Strings are immutable



Summary:  Sequence Operations
(Strings, Lists, Ranges)

Image Source: (http://cs111.wellesley.edu/spring19)
* Concatenation is not supported on range objects

http://cs111.wellesley.edu/spring19

