CS | 34;

| Ists anc

| 00

DS

Announcements & Logistics

Homework 3 is out on GLOW, due Monday 10 pm

Lab | graded feedback was released on VWed

Any problems!?

Lab 3 will be released today at noon

Watch pre-la

Lab 3 is a col

O video with your herd and discuss before lab

ection of word puzzles: can use our newly acquired

knowledge of strings, functions and loops to solve them

Do You Have Any Questions?

L ast [Ime

Started discussing sequences in Python
Focused on strings (sequences of characters)
Discussed slicing and indexing of strings
earned about 1N operator to test membership:
»+ Note: thereisalsoa not 1n operator
Also learned about string methods . Llower () and .upper()

- There are also string methods . 1slower() and . isupper()
that return True If string Is In lowercase/uppercase, else False

(Briefly) Introduced for loops as a mechanism to iterate over
sequences

Jloday's Plan

Discuss for loops iIn more detall

Introduce a new sequence: Lists

BuUl
BUl

d

d

Apply indexing, slicing, 1N operator to lists

a collection of functions that iterate over lists and strings

a module for working with sequences

Recap: Iterating with for Loops

- [he loop variable (char and var in the examples below) takes on the

value of each of the elements of the sequence one by one

for var 1n seq. # simple example of for loop

-l_OOp bOdy word = "Williams"

for char in word:
print (char)

(do something)

n 38 H KPS

Recap: count Vowels

Problem: Write a function countVowe Ls () that takes a string
wo rrd as input, counts and returns the number of vowels in the string.

def countVowels(word):
'""TReturns number of vowels 1n the word'''

pass

>>> countVowels('Williamstown')
4
>>> countVowels('Ephelia')

4

(Bad) Attempt with Conditionals

. Using conditionals as 7 [321¢ Z"ritzr Wl(l)llams
: C o ou =
ShCNVﬂISFepeUUVG if isVowel(word[0]):
and does not counter += 1
. . if isVowel (word[1l]):
generalize to arbitrary counter += 1
|engﬂ1VVOFdS if isVowel (word[2]):
counter += 1
« Note that val += 1 if isVowel(word[3]):

| counter += 1

s shorthand for if isVowel (word[4]):

val = val + 1 counter += 1

if isVowel (word[5]):
counter += 1

if isVowel (word[6]):
counter += 1

if isVowel (word[7]):
counter += 1

print (counter)

3

Counting Vowels Revisited

- Let's use a for loop to finish implementing our countVowels ()

function correctly

def countvVowels(word):
''"'Takes a string as input and returns
the number of vowels in it'"''

0 # initialize the counter

count

lterate over the word one character at a time
for char in word:
if isVowel(char): # call helper function
count += 1
return count

Count i1s an accumulator variable, since we
accumulate the value as we go through the loop.

Counting Vowels: Tracing the Loop

* How are the local variables updated as the loop runs?

def countVowels(word):

'""Takes a string as input and returns the number

of vowels in 1it''"'
count = 0

for char in word:

1f 1sVowel(char):

count += 1

return count

Loop variable

countAl1lVowels('Boston')

word

count

char

'Boston'

%
W s

Exercise: vowelSec

* Define a function vowelSeq() that takes a string word as input and returns

a string containing all the vowels in word In the same order as they appear.
(Hint: we can use i1sVowel() from last class)

def vowelSeg(word):
"""returns the vowel subsequence i1n word''’
pass

>>> vowelSeq("Chicago™)

"1a0"

>>> vowelSeq("protein")

o€l

>>> vowelSeq("rhythm")

Exercise: vowelSec

Define a function vowelSeq() that takes a string word as input and returns

a string containing all the vowels in word in the same order as they appear.
(Hint: we can use isVowel() from last class)

def vowelSeq(word):
"'""returns the vowel subsequence in word'''

vowels = # accumulation variable

for char in word:

return vowels

Exercise: vowelSed

Define a function vowelSeq() that takes a string word as input and returns

a string containing all the vowels in word in the same order as they appear.
(Hint: we can use isVowel() from last class)

def vowelSeq(word):

"'""returns the vowel subsequence in word'''

vowels = # accumulation variable

for char in word:
1f 1sVowel(char): # 1f vowel

vowels += char # accumulate characters

return vowels

Moving on: Lists

- Lists are another type of sequence in Python
» Definrtion: A list Is a comma separated sequence of values

- Unlike strings, which can only contain characters, lists can be collections
of heterogenous objects (strings, ints, floats, etc)

 loday we'll focus on iterating over lists (1.e., looking at the elements
sequentially) using for loops

» Next week we'll focus on manipulating and using lists to store dynamic
sequences of objects

L Ists

- Lists are:
- Comma separated sequences of values
- Heterogenous collections of objects

- Mutable (or‘changeable™) objects in Pythons. In contrast, strings are
immutable (they cannot be changed).

- We will discuss mutability in more detall soon!

In [1l]: # Examples of various lists:

wordList = ['What', 'a', 'beautiful', 'day']

numList = [1, 5, 8, 9, 15, 27]

charList = ['a’', 'e', '1', 'o', 'u']

mixedList = [3.145, 'hello', 13, True] # lists can be heterogeous

In [2]: type(numList)

Out[2]: list

Operations on Sequences

- We already saw several string operators and functions last time

- Most of these apply to lists as well

- We can do the following on lists:

+ Indexing elements of lists using []

+ Using len () function to find length

+ Slicing lists using [=]

» Testing membership using 1n/not 1n operators

- Concatenation using +

In [1]:

Oout[l]:

In [2]:

Oout[2]:

In [3]:

Out[3]:

In [4]:

In [5]:

Out[5]:

Operations on Sequences

wordList = ['What', 'a', 'beautiful'’,
wordList[3]

Idayl

wordList[-1]

Idayl

len(wordList)

4

nameList = ["Aamir", "Beth", "Chris",

nameList[2:4]

['Chris', 'Daxi']

ldayl]

"Daxi",

" Emory n]

Membership In Sequences

»+ Recall:The 1n operator in Python is used to test if a given sequence is
a subsequence of another sequence; returns True or False

In [20]: nameList = ["Anna", "Beth", "Chris", "Daxi", "Emory", "Fatima"]

In [28]: "Anna" in nameList # test membership

Out[28]: True

In [30]: "Jeannie" in namelList

Out[30]: False

Sequences: N0t 1n operator

» The not 1n operator in Python returns True if and only if the given
element 1s not in the sequence

In [20]: nameList = ["Anna", "Beth", "Chris", "Daxi", "Emory", "Fatima"]

In [28]: "Anna" in nameList # test membership

Out[28]: True

In [30]: "Jeannie" in namelList

Out[30]: False

In [31]: "Jeannie" not in namelList # not in returns true if el not in seq

Out[31]: True

In [33]: "a" not in "Chris"”

Out[33]: True

Strings to Lists: split()

- It is often useful to be able to convert strings to lists, and lists to strings.

- The split() method splits strings at “‘spaces’(the default separator)
and returns a list of (sub)strings

- (Can optionally specify other delimiters as well

In [5]: phrase = "What a lovely day"”

In [6]: phrase.split()

Out[6]: ['What', 'a', 'lovely', 'day']

In [7]: newPhrase = "What a *lovely* day!" # multiple spaces or punctuations dont matter
In [8]: newPhrase.split()

Out[8]: ['What',6 'a', '*lovely*',6 'day!']

In [9]: commaSepSpells = "Impervius, Portus, Lumos, Reducio, Protego" #comma separated strings

In [10]: commaSepSpells.split(', ")

Out[10]: ['Impervius', ' Portus', ' Lumos', ' Reducio', ' Protego']

List to Strings: join()

- Given a list of strings, the join() string method, when applied to a
character char, concatenates the strings together with the character
char between them

In [11]:

In [12]:

Out[l2]:

In [13]:

Oout[13]:

In [14]:

Out[1l4]:

wordList = ['Everybody', 'is', 'looking', 'forward',

'*#',join(wordList)

'Everybody*is*looking*forward*to*the*weekend'

_'".join(wordList)

'Everybody is looking forward to the weekend’

'.join(wordList)

'Everybody is looking forward to the weekend'

ltol’

'the’,

'weekend']

Looping over Lists

* We can loop over lists the same way we loop over strings

 As before, the loop variable iteratively takes on the values of each
item In the list, starting with the Oth item, then |st, until the last item

- The following loop iterates over the list, printing each item in 1t
In [15]: numList = [0, 2, 4, 6, 8, 10]

In [16]: for num in numList:
print (num)

= 00 & & N O

Exercise: countltem

- Let's write a function countItem() that takes as input a
sequence seq (can be a string or a list), and an element el, and
returns the number of times el appears in the sequence seq.

def countItem(seq, el):
"""Takes seqg as input, and returns the number of times
el appears 1in seq'""
pass

Exercise: countltem

- Let's write a function countItem() that takes as input a
sequence seq (can be a string or a list), and an element el, and
returns the number of times el appears in the sequence seq.

def countItem(seq, el):

Takes seqg as i1nput, and returns the number of times
el appears in seq"""

count = 0 # initialize counter

for item in seq:
if item == el: # if this item matches el
count += 1 # increment counter
else do wothing, go to next item
return count A

N,

N\

Another accumulator
variable!

Exercise: wordStartEnd

- Write a function that iterates over a given list of words wordList,

returns a (new) list containing all the words in wordList that start
and end with the same letter (ignoring case).

def wordStartEnd(wordList):

' ' 'Takes a list of words wordList and returns a list

of all words in wordList that start and end with the same letter'''
pass

>>> wordStartEnd(['Anna', 'banana', 'salad', 'Rigor’,
['Anna', 'Rigor', 'tacit']

>>> wordStartEnd(['New York', 'Tokyo', 'Paris'])

[]

>>> wordStartEnd(['*Hello*', '', 'nope'])

[' *Hello*']

'tacit', 'hope'])

Exercise: wordStartEnd

 Step by step approach (organize your work):

- Go through every word in wordList

- Check if word starts and ends at same letter

» If true, we need to “collect’” this word (remember 1t for later!)
» Else, just go on to next word

- [akeaway: need a new list to accumulate desirable words

- Break down bigger steps (decomposition!)

 |f word starts and ends at same letter:
- (Can do this using string indexing

- Think about corner cases: what If string is empty? what about case!

Exercise: wordStartEnd

- Write a function that iterates over a given list of words wordList,

returns a (new) list containing all the words in wordList that start
and end with the same letter (ignoring case).

def wordStartEnd(wordList):

Takes a list of words and returns a list of words in it
that start and end with the same letter'''

initialize accumulation variable (of type list)
result = []

for word in wordList: # iterate over 1list

#check for empty strings before indexing
if len(word) != O0:
if word[0].lower() == word[-1].lower():
result += [word] # concatenate to resulting list
return result # notice the indentation of return

Fxercise: palindromes

- Write a function that iterates over a given list of strings sList, returns
a (new) list containing all the strings In sList that are palindromes
(1.e., read the same backward and forward).

def palindromes(sList):
''"'"Takes a list of words wordList and returns a list
of all words in wordList that start and end with the same letter'
pass

>>> palindromes(['Anna', 'banana', 'kayak', 'rigor', 'tacit', 'hope'])
['Anna’, 'kayak']
>>> palindromes(['1313', '1110111', '0101'])
["1110111"']

>>> wordStartEnd(['Level’', 'Stick', 'Gag'])
['Level', 'Gag']

Fxercise: palindromes

- Step by step approach (organize your work):

» Go through every word in wordList

» Check if word is same forward and backwards

» I true, we need to collect this word (remember It for later!)
» Else, just go on to next word

- [akeaway: need a new list to accumulate desirable words

* Break down bigger steps (decomposition)

- |f word is same forward and backwards:
» (Can do using slicing with optional step

» Think about corner cases: what is string is empty? what about case!

Fxercise: palindromes

- Write a function that iterates over a given list of strings sList, returns

a (new) list containing all the strings In sList that are palindromes
(1.e., read the same backward and forward).

def palindromes(sList):

''"'"Takes a list of words and counts the
number of words in it that start and end
with the same letter'''’
initialize accumulation variable (of type list)
result = []
for word in slList: # iterate over list

wLower = word.lower ()

if wLower[::-1] == wLower:

result += [word] # concatenate to resulting list

return result

Putting Our Functions to Use

- We have written several helpful functions for working with sequences
* We can collect them in a module called sequenceTools
 Then, whenever we want to use our functions, we can import this module

+ pydoc3 sequenceTools gives an overview of all functions in it

) cs134 — less « pydoc3 sequenceTools — 67x23
NAME

sequenceTools - This module contains different functions that 1
terate over sequences such as strings and list.

DESCRIPTION

You can query this documentation using pydoc3 sequenceTools fro
m the terminal

FUNCTIONS
countItem(seq, el)
Takes as input a sequence seq (can be a string or a list),

and an element el and returns the number of times el appear
in the sequence seq.

countVowels(word)
Returns number of vowels in the given word.

palindromes(sList)
Takes a 1list of words and counts the
number of words in it that start and end
with the same letter

Importing a Module

* | the variable starts/ends with “__" 1t Is a special variable in Python

- Where have we already seen this!

all__ s another special variable

» A list of strings of function names (or other public objects) that are
intended to be iImported when the user types:

from moduleName import *

- Note: Any specific function/variable/etc. in the module can also be
explicitly imported as:

from moduleName import explicitVariableName

lesting Functions: Doctests

- We have already seen two ways to test a function (what were they??)

+ Python's doctest module allows you to embed test cases and
expected output directly into a function’s docstring

- Jo use the doctest module, we must import it using:
from doctest import testmod

- Jo make sure the test cases are run when the program Is run as a script
from the terminal, we then need to call testmod().

- o ensure that the tests are not run In interactive Python or when the

module is imported, we place the command within a guarded If block:
1f __name__ == ‘__main__":

lesting Functions: Doctests

def isVowel(char):

""" Takes a letter as input and returns true if and only if it is a vowel.
>>> isVowel('e')

HiEle

>>> isVowel('U")

el

>>> isVowel('t"')

False

>>> isVowel('Z")

False

return char.lower() in 'aeiou'

if _name__ == '_main__':
the following code tes¥s the tests in the docstrings ('doctests').
as you add tests, re-runX\Xhis as a script to test your work
from doctest import testmod this import 1s necessary when testing
testmod() # test this module, as_2rding to the doctests

Run the doctests only when file is
executed as a script

Extra ..

Range runction

- When the range function is given two integer arguments, and 1t returns a

range object of all integers starting at the first and up to, but not including,
the second

» lo see the values included in the range, we can pass It to the list function
which returns a list of them

- Alist is a new Python type: stores a sequence of any values, delimited by

In
In

21]:

square brackets, and separated by commas
1]:

range(0, 10)
range(0, 10)

Out [2]: 1ist(range(@,3))
In [3]: list(range(3)) #missing first arg defaults to 0
Out [3]: [0,1,2]

Strings to Lists: 1ist()

- Itis often useful to be able to convert strings to lists, and lists to strings.

» L1ist function when given a string returns a list of characters the
string Is composed of

In [1]:

In [2]:

out[2]:

In [3]:

In [4]:

In [5]:

Oout[5]:

spell = "Avada Kedavra!"

list(spell) # can turn a string into a list of its characters

[lAl, lVl’ lal’ ldl, lal, J l’ lKl, lel’ ldl’ lal, IVI’ lrl’ lal, l!l]

phrase = "What a lovely day"

wordList = phrase.split()

wordList

['What', 'a', 'lovely', 'day']

Loops to Repeat lasks

- Sometimes we might use a loop, not to riterate over a sequence but just to
repeat a task over and over. The following loops print a pattern to the
screen.

for 1 1n range(5): # for loops to print patterns
print('$" * 1)

for j in range(5): ’
print('*"' * j) >
$5%
for _ in range(10): >3%%
*
print('Hello World!"')
% %
% %k %
Try this out in interactive python! When loop variable is ¢ ¢ 3¢ oK

not needed in body, can use _ as variable

Mutability

Strings are Immutable

 Once you create a string, it cannot be changed!

* All functions that we have seen on strings return a new string
and do not modity the original string

Lists are mutable

 Lists are mutable sequences
 As we saw, you can append to a list

* You can modity a list in many other ways: we will see this in
the next lecture

Summary: Sequences Operations

Operation R

X in seq

True if an item of seq1s equal to x

x not in seq

False if an item of seq is equal to x

seql + seq2

The concatenation of seql and seq2*

seq*n, n*seq

n copies of seq concatenated

seq[i]

1’th item of seq, where origin is 0

seq[i:]]

slice of seq from i to j

seq[i:j:k]

slice of seq from 1 to | with step k

len(seq) length of seq
min(seq) smallest item of seq
max (seq) largest item of seq

* Concatenation I1s not supported on range objects

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Summary: String Methods

Returned value

word = '"Williams College’

word.split() ["Williams', 'College’]
word.upper() "WILLIAMS COLLEGE"
word. lower() 'williams college’
word.replace('iams', 'eslley') '"Willeslley College’
word.replace('tent’, 'eselley') '"Williams College’
newWord = ' Spacey College '

newWord.strip() 'Spacey College’
myList = ["Williams', 'College']

" '.join(myL1ist) "Williams College’

Remember. none of these operations change/affect the original
string, they all return a new string

Lots More String Functions

- word.find(s)

- Return the first (or last) position of string s in word. Returns -1 if not
found.

- char.isspace()
(or 1slower, 1supper, isalpha, 1sdigit, isalnum).

+ Returns True if s Is not empty and s Is composed of white space (or
lowercase, uppercase, or alphabetic letters, or digits, or erther letters or
digits).

- word.count(s)
- Returns the number of (non-overlapping) occurences of s in word

+ Many more: see pydoc3 str

Sorted Function

- The bullt-in function sorted which takes a sequence as input, creates and returns

a new list where items of are ordered in ascending order.

In [1]: numbers = [35, -2, 17, -9, 0, 12, 19]
sorted (numbers)

Out[1]: [-9, -2, O, 12, 17, 19, 35]

- Notice that the original list Is unchanged

In [2]: numbers

out[2]: [35, -2, 17, -9, 0, 12, 19]

Sorted Function on Strings

- Strings can be sorted the same way: the ordering used for the sorting Is dictated
by the ASCI| values of the characters.

In [3]: phrase = 'Red Code 1'
sorted(phrase)

Out[3]: [l I’ ! I’ Ill’ |C|, IR|, Idl, ldl, le|, leI’ IOI]

- Notice that spaces and special characters are first, following by numbers,

followed by capital letters, and finally lower case

» You can check the ASCII value of any character using the ord function

In [4]: ord(' ')

Out[4]: 32

- ASCII value of space

Why Sort Strings?

- Gives us a canonical form, useful to find other strings made up of the same

characters!

- Remember that when comparing strings, we should always make sure they are In

the same case (which is why we use .lower() often)
- Motivating example. Anagrames.
* Finding anagrams of a given word among a list of words

- What do anagrams have in common!?

Dormitory = Dirty room
School master = The classroom

Listen = Silent
Funeral = Real fun

