
CS 134:
Lists and Loops

Announcements & Logistics
• Homework 3 is out on GLOW, due Monday 10 pm

• Lab 1 graded feedback was released on Wed
• Any problems?

• Lab 3 will be released today at noon
• Watch pre-lab video with your herd and discuss before lab
• Lab 3 is a collection of word puzzles: can use our newly acquired

knowledge of strings, functions and loops to solve them

Do You Have Any Questions?

Last Time
• Started discussing sequences in Python

• Focused on strings (sequences of characters)
• Discussed slicing and indexing of strings
• Learned about in operator to test membership:

• Note: there is also a not in operator
• Also learned about string methods .lower() and .upper()

• There are also string methods .islower() and .isupper()
that return True if string is in lowercase/uppercase, else False

• (Briefly) Introduced for loops as a mechanism to iterate over
sequences

Today’s Plan
• Discuss for loops in more detail

• Introduce a new sequence: Lists

• Apply indexing, slicing, in operator to lists
• Build a collection of functions that iterate over lists and strings
• Build a module for working with sequences

Recap: Iterating with for Loops
• The loop variable (char and var in the examples below) takes on the

value of each of the elements of the sequence one by one

for var in seq:

 # loop body

 (do something)

Recap: count Vowels
• Problem: Write a function countVowels() that takes a string

word as input, counts and returns the number of vowels in the string.

def countVowels(word):

 '''Returns number of vowels in the word'''

 pass

>>> countVowels('Williamstown')

4

>>> countVowels('Ephelia')

4

(Bad) Attempt with Conditionals
• Using conditionals as

shown is repetitive
and does not
generalize to arbitrary
length words

• Note that val += 1
is shorthand for
val = val + 1

• Let’s use a for loop to finish implementing our countVowels()
function correctly

Counting Vowels Revisited

Count is an accumulator variable, since we
accumulate the value as we go through the loop.

Counting Vowels: Tracing the Loop
• How are the local variables updated as the loop runs?

def countVowels(word):

 '''Takes a string as input and returns the number

 of vowels in it'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count

char

count 10 2

'o''B' ’s' ’t' 'o' ’n'

countAllVowels('Boston')

word 'Boston'

Loop variable

Exercise: vowelSeq
• Define a function vowelSeq() that takes a string word as input and returns

a string containing all the vowels in word in the same order as they appear.
(Hint: we can use isVowel() from last class)

def vowelSeq(word):

 '''returns the vowel subsequence in word'''

 pass

>>> vowelSeq("Chicago")

"iao"

>>> vowelSeq("protein")

"oei"

>>> vowelSeq("rhythm")

""

Exercise: vowelSeq
• Define a function vowelSeq() that takes a string word as input and returns

a string containing all the vowels in word in the same order as they appear.
(Hint: we can use isVowel() from last class)

def vowelSeq(word):

 '''returns the vowel subsequence in word'''

 vowels = "" # accumulation variable

 for char in word:

 return vowels

Exercise: vowelSeq
• Define a function vowelSeq() that takes a string word as input and returns

a string containing all the vowels in word in the same order as they appear.
(Hint: we can use isVowel() from last class)

def vowelSeq(word):

 '''returns the vowel subsequence in word'''

 vowels = "" # accumulation variable

 for char in word:

 if isVowel(char): # if vowel

 vowels += char # accumulate characters

 return vowels

Moving on: Lists
• Lists are another type of sequence in Python

• Definition: A list is a comma separated sequence of values

• Unlike strings, which can only contain characters, lists can be collections
of heterogenous objects (strings, ints, floats, etc)

• Today we’ll focus on iterating over lists (i.e., looking at the elements
sequentially) using for loops

• Next week we’ll focus on manipulating and using lists to store dynamic
sequences of objects

• Lists are:

• Comma separated sequences of values

• Heterogenous collections of objects

• Mutable (or “changeable”) objects in Pythons. In contrast, strings are
immutable (they cannot be changed).

• We will discuss mutability in more detail soon!

Lists

• We already saw several string operators and functions last time

• Most of these apply to lists as well

• We can do the following on lists:

• Indexing elements of lists using []

• Using len() function to find length

• Slicing lists using [:]

• Testing membership using in/not in operators

• Concatenation using +

Operations on Sequences

Operations on Sequences

Membership in Sequences
• Recall: The in operator in Python is used to test if a given sequence is

a subsequence of another sequence; returns True or False

Sequences: not in operator
• The not in operator in Python returns True if and only if the given

element is not in the sequence

Strings to Lists: split()
• It is often useful to be able to convert strings to lists, and lists to strings.

• The split() method splits strings at “spaces”(the default separator)
and returns a list of (sub)strings

• Can optionally specify other delimiters as well

List to Strings: join()
• Given a list of strings, the join() string method, when applied to a

character char, concatenates the strings together with the character
char between them

Looping over Lists
• We can loop over lists the same way we loop over strings
• As before, the loop variable iteratively takes on the values of each

item in the list, starting with the 0th item, then 1st, until the last item
• The following loop iterates over the list, printing each item in it

Exercise: countItem
• Let’s write a function countItem() that takes as input a

sequence seq (can be a string or a list), and an element el, and
returns the number of times el appears in the sequence seq.

Exercise: countItem
• Let’s write a function countItem() that takes as input a

sequence seq (can be a string or a list), and an element el, and
returns the number of times el appears in the sequence seq.

Another accumulator
variable!

• Write a function that iterates over a given list of words wordList,
returns a (new) list containing all the words in wordList that start
and end with the same letter (ignoring case).

Exercise: wordStartEnd

• Step by step approach (organize your work):
• Go through every word in wordList
• Check if word starts and ends at same letter

• If true, we need to “collect” this word (remember it for later!)
• Else, just go on to next word

• Takeaway: need a new list to accumulate desirable words

• Break down bigger steps (decomposition!)

• If word starts and ends at same letter :
• Can do this using string indexing

• Think about corner cases: what if string is empty? what about case?

Exercise: wordStartEnd

Exercise: wordStartEnd
• Write a function that iterates over a given list of words wordList,

returns a (new) list containing all the words in wordList that start
and end with the same letter (ignoring case).

Exercise: palindromes
• Write a function that iterates over a given list of strings sList, returns

a (new) list containing all the strings in sList that are palindromes
(i.e., read the same backward and forward).

• Step by step approach (organize your work):
• Go through every word in wordList
• Check if word is same forward and backwards

• If true, we need to collect this word (remember it for later!)
• Else, just go on to next word

• Takeaway: need a new list to accumulate desirable words

• Break down bigger steps (decomposition)

• If word is same forward and backwards:
• Can do using slicing with optional step

• Think about corner cases: what is string is empty? what about case?

Exercise: palindromes

Exercise: palindromes
• Write a function that iterates over a given list of strings sList, returns

a (new) list containing all the strings in sList that are palindromes
(i.e., read the same backward and forward).

Putting Our Functions to Use
• We have written several helpful functions for working with sequences
• We can collect them in a module called sequenceTools

• Then, whenever we want to use our functions, we can import this module
• pydoc3 sequenceTools gives an overview of all functions in it

Importing a Module
• If the variable starts/ends with “__” it is a special variable in Python

• Where have we already seen this?

• __all__ is another special variable

• A list of strings of function names (or other public objects) that are
intended to be imported when the user types:

from moduleName import *

• Note: Any specific function/variable/etc. in the module can also be
explicitly imported as:

from moduleName import explicitVariableName

Testing Functions: Doctests
• We have already seen two ways to test a function (what were they??)
• Python's doctest module allows you to embed test cases and

expected output directly into a function’s docstring

• To use the doctest module, we must import it using:
from doctest import testmod

• To make sure the test cases are run when the program is run as a script
from the terminal, we then need to call testmod().

• To ensure that the tests are not run in interactive Python or when the
module is imported, we place the command within a guarded if block:
if __name__ == ‘__main__’:  

Testing Functions: Doctests

Run the doctests only when file is
executed as a script

Extra ..

Range Function
• When the range function is given two integer arguments, and it returns a

range object of all integers starting at the first and up to, but not including,
the second

• To see the values included in the range, we can pass it to the list function
which returns a list of them

• A list is a new Python type: stores a sequence of any values, delimited by
square brackets, and separated by commas

In [1]: range(0, 10)
In [2]: range(0, 10)
Out [2]: list(range(0,3))
In [3]: list(range(3)) #missing first arg defaults to 0
Out [3]: [0,1,2]

Strings to Lists: list()
• It is often useful to be able to convert strings to lists, and lists to strings.

• list function when given a string returns a list of characters the
string is composed of

Loops to Repeat Tasks
• Sometimes we might use a loop, not to iterate over a sequence but just to

repeat a task over and over. The following loops print a pattern to the
screen.

for i in range(5): # for loops to print patterns
 print('$' * i)
for j in range(5):
 print('*' * j)

for _ in range(10):
print('Hello World!')

$
$$
$$$
$$$$
*
**

Try this out in interactive python! When loop variable is
not needed in body, can use _ as variable

Mutability

• Once you create a string, it cannot be changed!
• All functions that we have seen on strings return a new string

and do not modify the original string

• Lists are mutable sequences
• As we saw, you can append to a list
• You can modify a list in many other ways: we will see this in

the next lecture

Lists are mutable

Strings are Immutable

Summary: Sequences Operations

Image Source: (http://cs111.wellesley.edu/spring19)

* Concatenation is not supported on range objects

http://cs111.wellesley.edu/spring19

Summary: String Methods

\

word = 'Williams College'
word.split() ['Williams','College']
word.upper() 'WILLIAMS COLLEGE'
word.lower() 'williams college'
word.replace('iams', 'eslley') 'Willeslley College'
word.replace('tent', 'eselley') 'Williams College'
newWord = ' Spacey College '
newWord.strip() 'Spacey College'
myList = ['Williams', 'College']
' '.join(myList) 'Williams College'

Remember. none of these operations change/affect the original
string, they all return a new string

Returned value

Lots More String Functions

\

• word.find(s)
• Return the first (or last) position of string s in word. Returns -1 if not

found.

• char.isspace()
 (or islower, isupper, isalpha, isdigit, isalnum).

• Returns True if s is not empty and s is composed of white space (or
lowercase, uppercase, or alphabetic letters, or digits, or either letters or
digits).

• word.count(s)

• Returns the number of (non-overlapping) occurences of s in word

• Many more: see pydoc3 str

Sorted Function
• The built-in function sorted which takes a sequence as input, creates and returns

a new list where items of are ordered in ascending order.

• Notice that the original list is unchanged

Sorted Function on Strings
• Strings can be sorted the same way: the ordering used for the sorting is dictated

by the ASCII values of the characters.

•

• Notice that spaces and special characters are first, following by numbers,
followed by capital letters, and finally lower case

• You can check the ASCII value of any character using the ord function

ASCII value of space

Why Sort Strings?
• Gives us a canonical form, useful to find other strings made up of the same

characters!

• Remember that when comparing strings, we should always make sure they are in
the same case (which is why we use .lower() often)

• Motivating example. Anagrams.

• Finding anagrams of a given word among a list of words

• What do anagrams have in common?

Dormitory = Dirty room
School master = The classroom
Listen = Silent
Funeral = Real fun

