Sec

CS|34:

Uuences anc

| 00

DS

Announcements & Logistics

Homework 3 is out on GLOW, due Monday @ |0 pm

Covers materials through last lecture (conditionals)
Lab | graded feedback will be released at noon today

Instructions on how to view feedback on course webpage under Labs
Lab 2 due today |0pm / tomorrow 9 pm (due to power outage)

Make sure to sign honorcode.txt

Slight change to Jeannie’s office hours today: 1:30=3:30pm

Do You Have Any Questions?

L ast [Ime

Looked at more complex decisions in Python
Used Boolean expressions with and, or, not
Chose between many different options in our code

If elif else chained conditionals

Jloday's Plan

Start discussing sequences in Python
Focus on strings today
Move on to lists on Friday
Discuss slicing and indexing of strings

Introduce for loops as a mechanism to iterate over sequences

Seqguences In Python: Strings

Sequences are an abstract type in Python that represent ordered
collections of elements: e.g,, strings, lists, ranges, etc.

Today we will focus on strings which are an ordered sequence of
individual characters (also of type STr)

Consider for example: word = "Hello"

"H' is the first character of word, '€ "' is the second character,
and so on

In Computer Science, It Is convention to use zero-indexing, so we
say that 'H' is the zeroth character of word, 'e "' is the first
character, and so on

Ve can access each character of a string using indices

How Do Indices Work!

Can access elements of a sequence (such as a string) using its index
Indices Iin Python are both positive and negative

Fverything outside of these values will cause an Indexktrror.

0 1 2 3 4 5 6 7
'"Wi1illiams'
8 7 -6 -5 -4 3 2 -

word = '"Williams'

Accessing Elements of Sequences

In [1]: word = 'Williams'

In [2]: word[0] # character at 0Oth index?

out[2]: 'W'

In [3]: word[3] # character at 3rd index?

Out[3]: '1'

In [4]: word[7] # character at 7th index?

Out[4]: 's'

In [5]: word[8] # will this work?

IndexError

Length of a Sequence

Python has a built-in len () function that computes the length of a
sequence such as a string (or a list, which we will see in next lecture)

Thus, a string worrd has (positive) indices
o, 1, 2, ..., len(word)-1

In [6]:

out[6]:

In [7]:

Oout([7]:

len("Williams")

8

len("pneumonoultramicroscopicsilicovolcanoconiosis")

45

Negative Indexing

Negative indexing starts from -1, and provides a handy way to access
the last character of a non-empty sequence without knowing its length

0 1 2 3 4 5 6 7

'W1ll1ams'

8 -7 -6 -5 4 3 2 -1
>>> word = 'Williams'

>>> word[-1]
ISl

Note: Most other languages do not support negative indexing!

Slicing Sequences

-+ Python allows us to extract subsequences of a sequence using the
slicing operator [:].

* e.g, suppose we want to extract the substring "Williams' from
'Williamstown'

- We can use the starting and ending indices of the substring and the
slicing operator [1]

- More examples in Jupyter notebook

In [15]: place = "Williamstown"
In [19]: # return the sequence from Oth index up to (not including) 8th
place[0:8]

Out[19]: 'wWilliams'

Slicing Sequences: Optional Step

he slicing operator [:] optionally takes a third step parameter that
determines In what direction to traverse, and whether to skip any
elements while traversing and creating the subsequence

By default the step is set to +1 (which means move left to right in
increments of one)

Default starting index is O, ending index Is end of string

We can pass other step parameters to obtain new sliced sequences;
see examples in Jupyter notebook.

In [20]: place = "Williamstown"

In [21]: place[:8:1] # 1 is default

Out[21]: 'williams'

Slicing Sequences: Optional Step

- When the optional step parameter is set to -1 it gives a nifty way to
reverse sequences as well

In [20]: place = "Williamstown"

In [22]: place[:8:2] # go left to right in increments of 2

Out[22]: 'Wlim'
In [23]: place[::2] # can you guess the answer?

Out[23]: 'Wlimtw'

In [24]: place[::-1] # reverse the sequence

Out[24]: 'nwotsmailliW'

Testing Membership: 1n Operator

» The 1n operator in Python is used to test if a given sequence is a
subseguence of another sequence; returns True or False

In [25]:

out[25]:

In [26]:

out[26]:

In [27]:

out[27]:

In [28]:

Oout[28]:

'Williams' in 'Williamstown'

True

'"W' in 'Williams'

True

w' in 'Williams' # capitization matters

False

'liam' in 'WilLLiams' # will this work?

False

String Methods: upper(), lower()

- The upper() and lower () string methods in Python convert a
string to upper or lowercase respectively; returns a new string

"HELLLOOOO...!!!"

In [29]: message

In [30]: message.lower() # leaves non-alphabets the same

Out[30]: 'hellloooo...!!!'

In [31l]: song = "$$ la la la laaa la S$S..."

In [32]: song.upper()

Out[32]: '$$ LA LA LA LAAA LA S$S...'°

New 1sVowel() function

- We can write an improved 1sVowe L () function that takes a
character as input and returns whether or not 1t is a vowel

* |gnore case by converting to lower case

»+ Use 1n operator

In [33]: def oldIsVowel(char):
"""0ld isVowel function
c = char.lower() # convert to lower case first

return (c == 'a oOor c == 'e Or

C == 1 oYX C == O Or C ==

u')

In [34]: def isVowel(char):
"""Simpler isVowel function
c = char.lower() # convert to lower case first
return ¢ in 'aeiou’

'teration Motivation: count Vowels

Problem: Write a function countVowe Ls that takes a string word as
input, counts and returns the number of vowels In the string.

def countVowels(word):
'""TReturns number of vowels i1n the word'"''

pass

>>> countVowels('Williamstown')
4

>>> countVowels('Ephilia')

4

Attempts with Conditionals

+ Using conditionals as ~ *7 [321% wore = Wl(l)llams
: o counter =
ShCNVﬂISFepeUUVG if isVowel(word[0]):

and does not counter += 1
if isVowel (word[1l]):

generalize to arprtrary S
|engﬂ1VVOFdS if isVowel (word[2]):
counter += 1
- Note thatval += 1 if isVowel(word[3]):

| counter += 1

s shorthand for if isVowel (word[4]):

val = val + 1 counter += 1

if isVowel (word[5]):
counter += 1

if isVowel (word[6]):
counter += 1

if isVowel (word[7]):
counter += 1

print (counter)

3

terating with for Loops

+ One of the most common ways to manipulate a sequence Is to

perform some action for each element in the sequence
- This is called looping or iterating over the elements of a sequence

* Syntax of a for loop:

for var 1n seq:
body of loop
(do something)

for loop Flow Chart

———

v
True till elements False
| in sequence |
statementl
{ for
i loop
body
statementN < y
L '
v

Image Source: (http://cs| | |.wellesley.edu/springl9)

http://cs111.wellesley.edu/spring19

terating with for Loops

he loop variable (char in this example) takes on the value of each of

the elements of the sequence one by one

In [37]: # simple example of for loop
word = "Williams"

for char in word:
print (char)

w 8o H - RS

Counting Vowels

- We can now use a for loop to finish implementing our

countVowels () function

def countvVowels(word):
'''"Takes a string as input and returns
the number of vowels in it'"''

count 0 # initialize the counter
lterate over the word one character at a time
for char in word:
if isVowel(char): # call helper function
count += 1
return count

Counting Vowels: Tracing the Loop

- How are the local variables updated as the loop runs?

def countAllVowels(word):

'"T"Returns number of vowels 1n the word'''

count = 0
for char in word:
1f 1sVowel(char):
count += 1

return count

Loop variable

countAl1lVowels('Boston')

word

count

char

'Boston'

Vg

P!

P

PSS

Exercise: Count Characters

- Define a function countChar () that takes two arguments, a character and

a word, and returns the number of times that character appears in the word
(lgnoring case).

def countChar(char, word):
"""Counts # of times a character appears in a word'''
pass

>>> countChar('m', 'ammonia')

2

>>> countChar('a', 'Alabama')

4

>>> countChar('a', 'rhythm'")

0

Exercise: Count Characters

* Define a function countChar () that takes two arguments, a character and

a word, and returns the number of times that character appears in the word
(lgnoring case)

def countChar(char, word):
'""Counts # of times a character appears in a word'''
count = @ # 1initialize count
for letter 1n word:
1f char.lower() == letter.lower():
count += 1 # update count

return count

Fxercise: VowelSec

+ Define a function vowelSeq() that takes a string word as input and returns
a string containing all the vowels iIn word in the same order as they appear.

def vowelSeg(word):
"'""returns the vowel subsequence in word''’
pass

>>> vowelSeq("Chicago™)

"1a0"

>>> vowelSeq("protein")

o€l

>>> vowelSeq("rhythm")

Fxercise: VowelSec

Define a function vowelSeq() that takes a string word as input and returns
a string containing all the vowels in word in the same order as they appear.

def vowelSeq(word):

"'""returns the vowel subsequence in word'''

vowels = # accumulation variable

for char in word:
1f 1sVowel(char): # 1f vowel

vowels += char # accumulate

return vowels

More next time!

