
CS134:
Conditionals and Modules

Announcements & Logistics
• Homework 2 is due tonight 10 pm

• Lab 2 due Wed 10pm / Thurs 9 pm (due to power outage)

• Will discuss in lab sections Mon/Tues

• Note that you can always work on lab machines any time
• Make sure to keep your work consistent with what is on evolene
• Always push to evolene when done with a work session
• If restarting work on a different machine:

• If working on a machine on this lab for the 1st time: clone the
repository just like you would when starting

• Otherwise, make sure to git pull first

Do You Have Any Questions?

Last Time
• Wrapped up functions
• Discussed return statements and variable scope
• Start learning about conditionals

• Boolean data type
• Making decisions in Python using if else statements

Today’s Plan
• Look at more complex decisions in Python

• Boolean expressions with and, or, not

• Choosing between many different options in our code
• If elif else chained conditionals

Python Conditionals (if Statements)
if <boolean expression>:

statement1

statement2

statement3

else:

 statement4

 statement5

If it is raining, then bring an umbrella.
Else, bring your sunglasses.

Note: (syntax) Indentation and
colon after if and else

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Conditional Statements: If Else
• Consider the following functions that check if a number is even or odd

Logical Operators
• Logical operators and, or, not are used to combine Boolean values

• For two expressions exp1 and exp2

• not exp1 (! in other languages) returns the opposite of the truth value for exp1

• exp1 and exp2 (&& in other languages) evaluates to True iff both exp1 and
exp2 evaluate to True

• exp1 or exp2 (|| in other languages) evaluates to True iff either exp1 or exp2
evaluate to True

Source: (http://cs111.wellesley.edu/spring19)

Truth Table for or Truth Table for and

http://cs111.wellesley.edu/spring19

Nested Conditionals
• Sometimes, we may encounter a more complicated conditional

structure with more than 2 options

• Example: Write a function that takes a temp value in Fahrenheit

• If temp is above 80, print "It is a hot one out there."

• If temp is between 60 and 80, print "Nice day out, enjoy!"

• If temp is below 60, print "Chilly day, don’t forget a jacket."

• Notice that temp can only be in one of those multiple ranges

• If we find that temp is greater than 80, no need to check the rest!

Nested Conditionals
if booleanExpression1:

 statement 1

 ...

else:

 if booleanExpression2:

 statement 2

 ...

 else:

 statement 3

 ...

Attempt 1: Chained Conditionals
• We can nest if-else statements (using indentation to distinguish

between matching if-else blocks)

• However, this can quickly become unnecessarily complex (and hard to
read)

Attempt 2: Chained Ifs
• What if we used a bunch of if statements (w/o else) one after the other

to solve this problem?

• What is the advantage/disadvantage of this approach?

If Elif Else Statements
• Fortunately, Python allows us a simpler way to choose one out of many

options by chaining conditionals

A better approach that avoids too
many indented blocks and improves

code readability

Can have any number of elif
conditions, but only one else

(at the end)

if booleanExpression1:

 statement 1

 ...

elif booleanExpression2:

 statement 2

 ...

else:

 statement 3

 ...

Flow Diagram: Chained Conditionals

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Attempt 3: Chained Conditionals
• Note that we can chain together any number of elif blocks

• The else block is still optional

Takeaway of Conditionals
• Chained conditionals can avoid having to nest conditionals. Chaining

reduces complexity and improves readability

• Since only one of the branches in a chained if, elif, else
conditionals evaluates to True, using them avoids unnecessary checks
incurred by chaining if statements one after the other

Exercise: leapYear Function
• Let us write a function leapYear that takes a year as input, and

returns True if it is a leap year, else returns False

• When is a given year a leap year?

• "Every year that is exactly divisible by four is a leap year, except for

years that are exactly divisible by 100, but these centurial years are

leap years, if they are exactly divisible by 400."

How do we structure this logic
using booleans and conditionals?

Exercise: leapYear Function
• Let us write a function leapYear that takes a year as input, and returns
True if it is a leap year, else returns False

• When is a given year a leap year?

• "Every year that is exactly divisible by four is a leap year, except for years

that are exactly divisible by 100, but these centurial years are leap years, if

they are exactly divisible by 400.”

• If year is not divisible by 4: is not a leap year

• Else (divisible by 4) and if not divisible by 100: is a leap year

• Else (divisible by 4 and by 100) and not divisible by 400: not a leap year

• Else (if we make it to here must be divisible by 400): is a leap year

https://www.calendar.best/leap-years.html

Exercise: leapYear Function

Leap years between from 1900 to 2060:

Exercise: leapYear Function

Moving on…

Modules and Scripts
• A script is generally any piece of code saved in a file, e.g., leap.py

• Scripts are meant to be directly executed with: python3 leap.py

• A module is generally a collection of statements and definitions that
are meant to be imported and used by a different program

• Python allows any program we write in a .py file to serve both as a
module, or script

• To provide a way to distinguish between these two modes, every
module has a special variable called __name__

• If a variable starts/ends with double __, it’s a special python variable

Modules and Scripts
• Consider for example, the code we wrote in leap.py

• When leap.py file is directly run as a script then the special variable
called __name__ is set to the string "__main__"

• When we are importing the code as a module, the __name__
variable is set to to the name of the module leap

• Why does this matter?

• Importing a module runs the program in it, and we often want
different behavior when the code is run as a script vs when it’s
imported as a module

 if __name__ == '__main__'
• This is just an if statement with an equality Boolean expression:

• Checking whether the special variable __name__ is set to the
string ‘__main__’. That is, the code is being run as a script

• We can place code that we want to run when our module is executed
as a script inside the if __name__ == “__main__”: block

• This is usually testing code and we do not want it to run when we are
importing functions from the file

Example: Script vs Module

