
CS134:
Functions

Check-in After First Lab!
• You have all survived your first computer science lab

• Congratulations!
• Computer science tools that you used:

• Atom as a text editor
• Terminal as a text-based interface to the computer
• Git for versioning, Github/Gitlab (cloud-based hosting service)

for retrieving & submitting your work
• Python, of course

Do You Have Any Questions?

Announcements & Logistics
• Lab 1 due today at 10 pm (for Monday labs)

• Lab 1 due tomorrow at 10 pm (for Tuesday labs)

• Homework 2 released today, due next Monday at 10 pm

• Office hours and TA hours today

• Shikha: 12:30 - 2:30pm

• Jeannie: 1-3 pm 2-4pm

• Lida: 2-4 pm

• TAs 4-6 pm and 7-11 pm in TCL 217A and TCL 216

• Herd scheduling: We got your info, we are working on it!

Do You Have Any Questions?

Aside: Accessing Lecture Materials

Last Time
• Discussed data types and variables in Python

• int, float, boolean, string
• Learned about basic operators

• arithmetic, assignment
• Experimented with built-in Python functions

• int(), input(), print()
• Investigated different ways to run and interact with Python

Review and Reflect
• What is the difference between executing a python program as a

script versus using interactive python?

• What is the difference between the Jupyter notebooks we use in
class versus an interactive python session?

• How can you experiment with examples that we do in class with a
Jupyter notebook by yourself?

• We recommend running the examples at the end of Lecture 2 that
we didn't cover in class

• Reviewing these notebooks is a great way to review lecture material

Today
• We will discuss functions in greater detail
• Review the built-in functions we (briefly) saw last time and in lab

• input(), print(), int() all expect argument(s) within the parens
• We will examine these a bit more today

• We will discuss the distinction between fruitful and non-fruitful functions
• We will also learn how to define our own functions

Review:
Python Built-in Functions

input(), print()

int(), float(), str()

Built-in functions: int()
• When given a string that’s a sequence of digits, optionally preceded by

+/-, int() returns the corresponding integer
• On any other string it raises a ValueError
• When given a float, int() returns the integer that results after

truncating it towards zero
• When given an integer, int() returns that same integer

In[1] int('42')
Out[1] 42
In[2] int(-5.5)
Out[2] -5
In[3] int('3.141')
ValueError

Built-in functions: float()
• When given a string that’s a sequence of digits, optionally preceded by

+/-, and optionally including one decimal point, float() returns the
corresponding floating point number.

• On any other string it raises a ValueError
• When given an integer, float() converts it to a floating point number.
• When given a floating point number, float returns that number

In[1] float('3.141')
Out[1] 3.141
In[2] float('-273.15')
Out[2] -273.15
In[3] float('3.1.4')
ValueError

Built-in functions: str()
• Converts a given type to a string and returns it
• Returns a syntax error when given invalid input

In[1] str(3.141)
Out[1] '3.141'
In[2] str(None)
Out[2] 'None'
In[3] str(134)
Out[3] '134'
In[4] str($)
SyntaxError: invalid syntax

Built-in functions: input()
• input() displays its single argument as a prompt on the screen and

waits for the user to input text, followed by Enter/Return
• It returns the entered value as a string

In[1] input('Enter your name: ')
Enter your name: Harry Potter
Out[1] 'Harry Potter'
In[2] age = input('Enter your age : ')
Enter your age: 17
In[3] age
Out[3] '17'

Prompts in red. User input in blue.
Inputted values are by default a string

Built-in functions: print()
• print() displays a character-based representation of its argument(s)

on the screen and returns a special None value (not displayed). Notice
there are no “Out[]” lines.

In[1] name = 'Harry Potter'
In[2] print('Your name is', name)
Your name is Harry Potter
In[3] age = input('Enter your age : ')
Enter your age: 17
In[4] print('The age of ' + name + ' is ' + age)
The age of Harry Potter is 17

Comma as a separator adds a space

Can also add spaces through string
concatenation

Today:
User-Defined Functions

Structuring Code
• So far we have:

• Written simple expressions
• Created small scripts to perform certain tasks

• This is fine for small computations!
• But we need more organization for larger problems

• Structuring code is good for :
• Keeping track of which part of our code is doing what actions
• Keeping track of what information needs to supplied where

• Reusability! Specifically, reusing blocks of code

Abstracting with Functions
• Abstraction: Reduce code complexity by ignoring (or hiding) some

implementations details

• Allows us to achieve code decomposition and reuse

• Real life example: a projector

• We know how to switch it on and off (public interface)

• We know how to connect it to our computer (input/output)

• We don’t know how it works internally (information hiding)

• Key idea: We don’t need to know much about the internals of a
projector to be able to use it!

• Same is true with functions!

Decomposition
• To write organized code, divide individual tasks into separate functions

• Functions are self-contained

• Each function is a small piece of a larger task

• Functions are reusable

• Keep code organized

• Keep code coherent

• We have already seen some built-in examples (int(), input(), print(), etc)
• Today we will learn how to decompose our Python code and hide small

details using user-defined functions
• Later in the semester, we will learn a new abstraction which achieves a

greater level of decomposition and code hiding: classes

Anatomy of a Function
• Function definition characteristics:

• Has a name #header

• Has parameters (optional) #header

• Has a docstring (optional, but recommended) #header

• Has a body (indented and required)

• Always returns something (with or without an explicit return
statement)

• Statements within the body of a function are not run in a program
until they are “called” or “invoked” through a function call (like calling
print() or int() in your program)

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

In [1] square(5)

Out [1] 25

In [2] square(-2)

Out [2] 4

Function’s name is square

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

In [1] square(5)

Out [1] 25

In [2] square(-2)

Out [2] 4

square has one parameter, x, which
is the expected input to the function.

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

In [1] square(5)

Out [1] 25

In [2] square(-2)

Out [2] 4

This is the docstring, which is enclosed in triple
quotes. It is a short description of the function.

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

In [1] square(5)

Out [1] 25

In [2] square(-2)

Out [2] 4

This is the body of the function. Notice
that this functions includes an explicit

return statement.

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

In [1] square(5)

Out [1] 25

In [2] square(-2)

Out [2] 4

Notice the indentation. This is
very important!!

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

In [1] square(5)

Out [1] 25

In [2] square(-2)

Out [2] 4

When we call/invoke the function,
5 is the argument value.

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

In [1] square(5)

Out [1] 25

In [2] square(-2)

Out [2] 4

Summary:
• Indent in function body (required)
• Colon after function name (required)
• Docstring (recommended, good style)
• x in function definition is a parameter
• Single line body which returns the result

of the expression x * x
• return always ends execution!
• Function is defined once and can be

called any number of times!

A Closer Look At Parameters
• Parameters are “holes” in the body of a function that will be filled in

with argument values in each invocation

• A particular name for a parameter is irrelevant, as long as we use it
consistently in the body (just like f(x) and f(y) in math)

• All of the square function definitions work exactly the same way!

• Invocation would also look exactly the same: square(5)

def square(x):

return x*x

def square(num):

return num*num

def square(apple):

return apple*apple

Rule of thumb: Choose parameter names that make sense. Avoid always using x, for example.

Python Function Call Model
Function frame: Model for understanding how a function call works

square (2+3) square (5)

5

square frame

x=

return x * x

5

square frame

x=

return 5 * 5

5

square frame

x=

return 25

25

Return value replaces the function call!def square(x):
return x*x

`

Function Call Replaced by Return Value

17 + square (2+3)

17 + square (5)

17 + 25

42

Jupyter Notebook:
Let’s See Some Examples

Print() vs Functions that Return Values
• Notice that the print() function does not return any value:

• No Out[] cell when we print in Jupyter

• In contrast to print():

• input() function returns the value inputted by user as a str

• int() function returns the given value as type int

• type() function returns the type of given value, etc

• Functions that do not explicitly return a value, implicitly return None

Fruitful vs. Non-fruitful Functions
We call functions that return a None value None-returning or None
functions. Such functions are invoked to perform an action (e.g., print
something, change state). They do not compute and return a result.

We call functions that return a value other than None fruitful functions
or value-returning functions.

def square(x):

return x*x

Fruitful

def printHW():

print(`Hello World’)

None Function

What if I run print(printHW) or print(print((printHW))?

Return Statements
• return only has meaning inside of a function definition

• A function definition may have multiple returns, but only the first one
encountered is executed!

• Any code that exists after a return statement is unreachable and will
not be executed

• The value returned by the function’s return statement replaces the
function call in a computation

• Functions without an explicit return statement implicitly return None

Exercise: Making Change
• Suppose you are a cashier and you need to make change for a given

number of cents using only quarters, dimes, nickels, and pennies

• Most cashiers use the following greedy strategy to make change using
the fewest number of coins:

• Use as many quarters as possible first, then as many dimes as
possible next, and so on, using the fewest number of pennies last

• Assume you have an unlimited supply of each coin

Exercise: Making Change
• Problem. Let us write a function makeChange(cents) that takes

as a parameter an integer cents and returns the fewest number of
coins needed to make change for cents cents

• Approach: decompose the problem into smaller pieces

• What is the maximum number of quarters we can use?

• q = cents // 25
• How much money is left if we use q quarters?

• cents = cents % 25
• For the remaining cents, what is the maximum number of dimes can

we use?

Example Code

Ignore this for now... We will come
back to this!

Two Ways To Test

Test interactively by importing the function in
interactive Python. We’ll see this again in Lab 2.

If function is called in a file, then execute the
program from the Terminal using python3

Variable Scope
• Local variables. An assignment to a variable within a function

definition creates/changes a local variable
• Local variables exist only within a functions body, and cannot be

referred outside of it
• Parameters are also local variables that are assigned a value when

the function is invoked

def square(num):

return num*num

In [1] square (5)
Out [1] 25
In [2] num
NameError: name ‘num’ is not defined

Variable Scope
def myfunc (val):

val = val + 1
print('val = ', val)
return val

val = 3
newVal = myfunc(val)

Global scope

myfunc
Some
code

val 3

newVal

Variable Scope
def myfunc (val):

val = val + 1
print('val = ', val)
return val

val = 3
newVal = myfunc(val)

Global scope

3

myfunc frame

val

val = val + 1

print(`val =`, val)

return val

myfunc
Some
code

val 3

newVal eww

Variable Scope
def myfunc (val):

val = val + 1
print('val = ', val)
return val

val = 3
newVal = myfunc(val)

Global scope

3

myfunc frame

val

val = val + 1

4

print(`val =`, val)

return val 4

myfunc
Some
code

val 3

newVal eww

Variable Scope
def myfunc (val):

val = val + 1
print('val = ', val)
return val

val = 3
newVal = myfunc(val)

Global scope

3

myfunc frame

val

val = val + 1

4

print(`val =`, val)

return val 4

myfunc
Some
code

val 3

newVal 4

Information flow out of a function is only through return statements !

Function frame destroyed
(and all local variables lost)

after return from call

Variable Scope
def myfunc (val):

val = val + 1
print('val = ', val)
return val

val = 3
newVal = myfunc(val)

Global scope

myfunc
Some
code

val 3

newVal 4

