
CS134:
Python Types and Expressions

Announcements/ Logistics
• Homework 1 due today at 10 pm (Google form)

• Scheduled labs this week:

• Monday1.10 pm: TCL 217A - Shikha), TCL 216 - Kelly

• Monday 2.35 pm: TCL 217A - Kelly

• Tuesday 1.10 pm: TCL 217A - Jeannie), TCL 216 - Kelly

• Tuesday 2.35 pm: TCL 217A - Kelly

• Office hours (today):

• Shikha 3-5 pm, TCL 204

• TA hours (today)

• 7-11 pm in TCL 217A and TCL 216

• Goal for this week: meet at least two TAs & talk to at least one instructor outside
class!

This Week
• Homework 1 due today at 10 pm (Google form)

• Setup your personal machine:

• Find the Mac and Windows Setup Guide on course page

• Try out all the steps

• If you get stuck, come to us!

• Please do this soon! First week is the best time to get this done

• Read about CS 134 Tools (also linked under Resources)

• Lab 1 (start during lab session)

• Goal: get you comfortable with the workflow and tools

• Start with some short and sweet Python programs

• Get used to different interfaces we will see in this course

Aspects of Languages
• Primitive constructs

• English: words
• Programming languages: numbers, strings, simple operators

Slide adapted from https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

Aspects of Languages
• Syntax

• English: “cat dog boy” (incorrect), “cat hugs boy” (correct)
• Programming language: “hi”5 (incorrect), 4*5 (correct)

Slide adapted from https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

Aspects of Languages
• Semantics is the meaning associated with a syntactically correct string

of symbols
• English: can have many meanings (ambiguous), e.g.

• “Flying planes can be dangerous”
• Other examples?

• Programming languages:

• Must be unambiguous
• Can only have one meaning
• Actual behavior can sometimes be not what is intended !

Slide adapted from https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

Python3
• Programming language in this course

• Great introductory language

• Better human readability and user friendly

• For this class, we need Python 3.6.4 or above

• Checking version of Python on machine

• (Mac, Linux, or Windows Subsystem for Linux)

• Typing python --version in Terminal (Ubuntu Shell)

• Preinstalled on all lab machines

• Installing Python3 on your machine: setup guide

Python: Program as a Script
• A program is a sequence of definitions and commands

• Definitions are evaluated

• Commands are executed and instruct interpreter to do something

• Can be typed in a file that is read and evaluated at the terminal

• For example, we write helloworld.py in a file and then executed
it from the Terminal with python3 helloworld.py

• Standard method: good for longer pieces of code

• We will use this method in labs as well

• Called "running the Python program as a script"

Python: Interactive
• What makes Python great for introductory programming:

• Interactive language

• Can launch the Python interpreter by typing python3 in the Terminal

• Opens up Interactive Python

• Almost like a "calculator" for Python commands

• Takes a Python expression as input and spits out, the results of
the expression as an output

• Great for trying out short pieces of code

• Great for teaching Python in Lectures

• Today we will use a "fancy" version of Interactive Python called Jupyter
Notebooks

Let us Look at
Lecture 2: Jupyter Notebook

• Need to add somewhere:

• In programing, a sequence of commands is read left to right, and
top down in sequence

Python Commands
• Commands instruct the Python interpreter to do something

• Can be typed directly into Interactive Python or stored in a file that
is read and evaluated

• Let us look at some

Python Primitive Types
• Each value has a type, for example

• E.g. 10 is an integer (type: int)
• 3.145 is a decimal number (type: float)
• ‘Williams’ is a sequence of letters (type: string)
• Special type in programming: 0 and 1 (type: bool)
• Special type in programming: None (NoneType)

• Can use command type() to ask Python to tell us the type of a value

Knowing the type of a value
allows us to choose the right

operator for expressions.

Python Primitive Types
• Each value has a type, for example

• E.g. 10 is an integer (type: int)
• 3.145 is a decimal number (type: float)
• ‘Williams’ is a sequence of letters (type: string)
• Special type in programming: 0 and 1 (type: bool)
• Special type in programming: None (NoneType)
• E.g. int, float, str, bool, NoneType
• Can use type() to see the type of an value
• Knowing the type of a value allows us to choose the right operator when creating

expressions
• Operators:

• E.g. + - * / % // =
• Expressions:

• E.g. ‘3+4’ , ‘Williams’ * 3, len(‘shikha’)
• Always produce a value as a result

• Built-in functions:
• int, float, str, print, input, max, min, len

Knowing the type of a value
allows us to choose the right

operator for expressions.

Python Primitives
• Values:

• E.g. 10 (integer), 3.145 (float), ‘Williams’ (string)
• Types:

• E.g. int, float, str, bool, NoneType
• Can use type() to see the type of an value
• Knowing the type of a value allows us to choose the right operator

when creating expressions
• Operators:

• E.g. + - * / % // =
• Expressions:

• E.g. ‘3+4’ , ‘Williams’ * 3, len(‘shikha’)
• Always produce a value as a result

• Built-in functions:
• int, float, str, print, input, max, min, len

Knowing the type of a value
allows us to choose the right

operator for expressions.

Python Program
• A program is a sequence of definitions and commands

• Definitions are evaluated

• Commands are executed by the Python interpreter in a shell

• Commands instruct interpreter to do something

• Can be typed directly in a shell or stored in a file that is read and
evaluated

• In lectures, we’ll use Jupyter for instant evaluation and output

• In labs, you’ll write your program as a script and save it with a .py
extension, e.g. `hellowold.py’. You can execute the
program from the terminal: python3 helloworld.py

Python and Interfaces
• Interfaces we will use to Python:

• IPython
• Interactive command-line terminal for Python
• Created by Fernando Perez
• Powerful interface to use Python
• Often called a REPL (‘Read-Eval-Print-Loop’)

• Jupyter Notebook
• Created in 2011, a new web-based interface for Python
• Teaching aid in class—makes teaching programming more interactive and

efficient
• Also Popular tool for scientific exposition, especially data science (even in

languages such as R and Julia)
• In labs you will be writing python programs as a script with extension .py that can be

executed from the terminal

Python: Interactive Ways
“>>” tells you it is an interactive python session in the terminal
>> 1 + 2

3

>> 3* 4

12

“In [] and Out” tells you it is an interactive python session in Jupiter
In [10]: 12/3

Out [10]: 4.0

Out vs Print: “Print” means it is printed onto the console and will actually be shown to
the user when you edit/run the script

In [11]: print(25//5)

5

Operator Precedence

• Operator precedence without parenthesis

**
*
/
+ and - (left to right as they appear)

• Parenthesis used to override precedence and tell Python do these
operations within parenthesis first

Variable Assignment

• A variable names a value that we want to use later in a program
• Variables as a box model.

An assignment statement var = exp stores the value of exp in a
“box” labeled by the variable name

• Later assignments can change the value in a variable box. Note: The
symbol '=' is pronounced “gets” not “equals”!

In [1] num = 17
In [2] num
Out [2] 17
In [3] num = num - 5
In [4] num
Out [4] 12

num
17 12

Abstracting Expressions

• Why give names to values of expressions?
• To reuse names instead of values
• Easier to change code later

In [1] pi = 3.14159
In [2] radius = 2.2
In [3] area = pi * (radius**2)
In [4] area
Out [4] 15.205295600000001
In [5] round(area, 2)
Out [5] 15.21

Programming vs Math

• In programming, “we don’t solve for x”

pi = 3.14159
radius = 2.2
area = pi * (radius**2)
radius = radius + 1 #can be shortened to radius +=1

An assignment: expression on the right
evaluated first and the value is stored in the

variable name on the left

radius
2.2 3.2

Built-in functions: input()

• input displays its single argument as a prompt on the screen and
waits for the user to input text, followed by Enter/Return. It
returns the entered value as a string.

In [1] input('Enter your name: ')
Enter your name: Harry Potter
Out [1] 'Harry Potter'
In [2] age = input('Enter your age : ')
Enter your age: 17
In [3] age
Out [3] ’17' Prompts in Maroon. User input in blue.

Inputted values are by default a string

Built-in functions: print()

• print displays a character-based representation of its argument(s)
on the screen and returns a special None value (not displayed).

In[1] name = 'Harry Potter'
In [2] print('Your name is', name)
Your name is Harry Potter
In [3] age = input('Enter your age : ')
Enter your age: 17
In [4] print('The age of ' + name + ' is ' + age)
The age of Harry Potter is 17

Printed on the console; Comma as a
separator adds a space

Can also add spaces through string
concatenation

Built-in functions: int()
• When given a string that’s a sequence of digits, optionally preceded by +/-,

int returns the corresponding integer. On any other string it raises a
ValueError (correct type, but wrong value of that type).

• When given a float, int return the integer the results by truncating it
toward zero.

• When given an integer, int returns that integer.

In [1] int('42')
Out [1] 42
In [2] int('-5')
Out [2] -5
In [3] int('3.141')
ValueError

Built-in functions: float()
• When given a string that’s a sequence of digits, optionally preceded by

+/-, and optionally including one decimal point, float returns the
corresponding floating point number. On any other string it raises a
ValueError.

• When given an integer, float converts it to floating point number.
• When given a floating point number, float returns that number.

In [1] float('3.141')
Out [1] 3.141
In [2] float('-273.15')
Out [2] -273.15
In [3] float('3.1.4')
ValueError

Expressions vs Statement

Expressions
• They always produce a value

10 + 12 - 3
num + 4
“CS” + “134”

• Expressions can be composed of any
combination of values, variables, and
function calls

max(10, 20)

Statements
• They perform an action (that can

be visible, invisible or both)

age = 12
print(‘Hello World’)

• Statements may contain
expressions, which are evaluated
before the action is performed

print('She is ' + str(age) + '
years old')

• Some statements return a None
value which is not normally
displayed

Error Messages

• Type Errors
 ‘134’ + 5
 len(134)

• Value Errors
 int(‘3.142’)
 float(‘pi’)

• Name Errors
 int(‘3.142’)
 float(‘pi’)

• Syntax Errors
 2ndValue = 25
 1 + (ans = 42)

Submitting Labs: Git
• Git is a version control system that lets you manage and keep track of your

source code history

• GitHub is a cloud-based git repository management & hosting service

• Collaboration: Lets you share your code with others, giving them power
to make revisions or edits

• GitLabs is similar to GitHub but we maintain it internally at Williams and will
use to handle submissions and grading

