
CS134:
Sorting



Announcements & Logistics
• Lab 9 Boggle 


• Work on Boggle again in lab this week today/tomorrow

• All three parts are due Wed/Thur at 11 pm


• HW 9 will be released on Wed, due next Mon @ 11 pm

• Check calendar for updated office hours this week


• Last lab (Lab 10) will be a short Java program


• We will discuss Java in last few lectures after we wrap up sorting today

Do You Have Any Questions?



Last Time:  Efficiency & Searching
• Measured efficiency as number of steps taken by algorithm on worst-

case inputs of a given size

• Introduced Big-O notation which captures the rate at which the number 

of steps taken by the algorithm grows wrt size of input , "as  gets 
large"


• Compared array lists vs linked lists

• Compared linear vs binary search

n n



Today:  Searching and Sorting
• Wrap up our discussion of binary search including a runtime analysis


• Discuss some classic sorting algorithms: 


• Selection sorting in  time


• A brief (high level) discussion of how we can improve it to 

• Overview of recursive merge sort algorithm

O(n2)

O(n log n)



• Binary search: recursive search algorithm to search in a sorted array list

• Similar to how we search for a word in a (physical) dictionary


• Takes  time


• Much more efficient than a linear search


• Note:  grows much more  
slowly compared to  as  gets large

O(log n)

log n
n n

Review: Binary Search



• Base cases?  When are we done?


• If list is too small (or empty) to continue searching 


• If item we’re searching for is the middle element 

Review:  Binary Search

mid = n//2

Check middle



• Recursive case: 


• Recurse on left side if item is smaller than middle


• Recurse on right side if item is larger than middle

Review:  Binary Search

mid = n//2

If item < L[mid], then need to 
search in L[:mid]



• Recursive case: 


• Recurse on left side if item is smaller than middle


• Recurse on right side if item is larger than middle

Review:  Binary Search

mid = n//2

If item > L[mid], then need to 
search in L[mid+1:]



Review:  Binary Search

There is one small 
problem with our 

implementation.  List 
splicing is O(n)!  See 

Jupyter for improvement. 



Analysis of Binary Search
• Within a recursive call in our improved approach:


• Constant number of steps (independent of ): just 1 comparison


• Therefore total number of steps: 
• Size of list gets cut in half in each recursive call: 

 

• This is an  time


• Really small even for large !

n

O(# of recursive calls)

n → n/2 → n/4 → n/8 → ⋯ → n/2i = 1

O(log n)

n

 (1 billion) ~ 30log2



Sorting



Sorting
• Problem: Given a sequence of unordered elements, we need to sort 

the elements in ascending order.


• There are many ways to solve this problem!


• Built-in sorting functions/methods in Python


• sorted(): function that returns a new sorted list


• sort():  method that mutates and sorts the list its called on


• Today:  how do we design our own sorting algorithm?


• Question:  What is the best (most efficient) way to sort  items?


• We will use Big-O to find out!

n



Selection Sort
• A possible approach to sorting elements in a list/array:  


• Find the smallest element and move (swap) it to the first position


• Repeat:  find the second-smallest element and move it to the 
second position, and so on
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Selection Sort
• Generalize: For each index  in the list L, we need to find the min item 

in L[i:] so we can replace L[i] with that item


• In fact we need to find the position minIndex of the item that is 
minimum in L[i:]


• Reminder:  how to swap values of variables a and b?


• Using tuple assignment in Python: a, b = b, a


• Or using a temp variable:  temp = a; a = b; b = temp

• Let's implement this algorithm!

i



Selection Sort Code



Selection Sort Analysis
• For , inner loop runs  items


• For , inner loop runs  times

• ...


• For , inner loop runs  times

i = 0 n − 1

i = 1 n − 2

i = n − 1 0



Selection Sort Analysis
• Within the inner loop we have  steps - just 1 comparison (constant)


• Thus overall number of steps is sum of inner loop steps  

• What is this sum?  (Math 200??)

O(1)

(n − 1) + (n − 2) + ⋯ + 0 ≤ n + (n − 1) + (n − 2) + ⋯ + 1



Selection Sort Analysis

S = n + (n − 1) + (n − 2) + ⋯ + 2 + 1
S = 1 + 2 + ⋯ + (n − 2) + (n − 1) + n

2S = (n + 1) + (n + 1) + ⋯ + (n + 1) + (n + 1) + (n + 1)

+

2S = (n + 1) ⋅ n
S = (n + 1) ⋅ n ⋅ 1/2

• Total number of steps taken by selection sort is thus:

•    O(n(n + 1)/2) = O(n(n + 1)) = O(n2 + n) = O(n2)



Towards an  AlgorithmO(n log n)
• There are many other natural sorting algorithms that compare and 

rearrange elements in a slightly different way, but they are still  steps


• Any algorithm that takes  steps to move each item  positions to 
its final position will take at least  steps as every element can 
be  away from its position in the worst case.


• To do better than much better than , we need to be able to 
move an item to its final position in significantly less steps 


• Turns out we can sort in  time if we are bit more clever, which 
is the best possible:  Merge sort algorithm (Invented by John von 
Neumann in 1945)

O(n2)

k k
O(n2)

O(n)

n2

O(n log n)



• If we split the list in half, sorting the left and right half are smaller 
versions of the same problem


• Algorithm:   


• (Divide) Recursively sort left and right half (O(log n))


• (Conquer) Merge the sorted halves into a single sorted list (O(n))


• (More info in extra slides at the end of this lecture!)

Merge Sort:  Basic Idea

L
m = n//2

0 n = len(L)

12 2 9 4 11 3 1 7 14 5 13



Selection vs Merge Sort in Practice
• Selection sort is  and merge sort is  time

• But, how different is the performance of each in practice?

• Example:  wordList is12,000 words in the book Pride & Prejudice

• miniList and medList are the first 500 and 7000 words 
respectively

O(n2) O(n log n)



Selection vs Merge Sort in Practice
• miniList:  500 words

• medList:  7000 words

• wordList: ~12000 words

~10 mins vs 1/3 sec!



Summary:  Searching and Sorting
• We have seen algorithms that are


• :  binary search in a sorted list


• :  linear searching in an unsorted list


• :  merge sort


• :  selection sort

• Important to think about  

efficiency when writing code!

• More about this in CS136!

O(log n)

O(n)

O(n log n)

O(n2)



Extra Slides



• Problem.  Given two sorted lists a and b, how quickly can we merge 
them into a single sorted list?

Merging Sorted Lists

merged list c

a

122 94 11

i

31 7 145 13

b

j



Is a[i] <= b[j] ?

• Yes, a[i] appended to c

• No, b[j] appended to c
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Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?

• Yes, a[i] appended to c

• No, b[j] appended to c

2 3



Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list c k

1

Is a[i] <= b[j] ?

• Yes, a[i] appended to c

• No, b[j] appended to c

2 3 54 7 9 11 12 13 14



• Walk through lists  
maintaining current position of 
indices 

• Compare  and , 
whichever is smaller gets put in 
the spot of 

• Merging two sorted lists into 
one is an  step algorithm!


• Can use this merge procedure 
to design our recursive merge 
sort algorithm!

a, b, c

i, j, k

a[i] b[ j]

c[k]

O(n)

Merging Sorted Lists



• Base case: If list is empty or 
contains a single element: it is 
already sorted


• Recursive case: 

• Recursively sort left and 

right halves

• Merge the sorted lists into a 

single list and return it

• Question:  


• Where is the sorting 
actually taking place?

Merge Sort Algorithm



4 11 1 7 5 13
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12 2 9 4 11 3 1 7 14 5 13

Merge Sort Example

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13



31 14132 4 5 7 9 11 12

2 12 4 9 11 135 141 3 7

Merge Sort Example

114

4 11 1 7 5 13

1 13512 2 9 3 147

122 94 11 31 7 145 13


