
CS134:
Sorting

Announcements & Logistics
• Lab 9 Boggle

• Work on Boggle again in lab this week today/tomorrow

• All three parts are due Wed/Thur at 11 pm

• HW 9 will be released on Wed, due next Mon @ 11 pm

• Check calendar for updated office hours this week

• Last lab (Lab 10) will be a short Java program

• We will discuss Java in last few lectures after we wrap up sorting today

Do You Have Any Questions?

Last Time: Efficiency & Searching
• Measured efficiency as number of steps taken by algorithm on worst-

case inputs of a given size

• Introduced Big-O notation which captures the rate at which the number

of steps taken by the algorithm grows wrt size of input , "as gets
large"

• Compared array lists vs linked lists

• Compared linear vs binary search

n n

Today: Searching and Sorting
• Wrap up our discussion of binary search including a runtime analysis

• Discuss some classic sorting algorithms:

• Selection sorting in time

• A brief (high level) discussion of how we can improve it to

• Overview of recursive merge sort algorithm

O(n2)

O(n log n)

• Binary search: recursive search algorithm to search in a sorted array list

• Similar to how we search for a word in a (physical) dictionary

• Takes time

• Much more efficient than a linear search

• Note: grows much more  
slowly compared to as gets large

O(log n)

log n
n n

Review: Binary Search

• Base cases? When are we done?

• If list is too small (or empty) to continue searching

• If item we’re searching for is the middle element

Review: Binary Search

mid = n//2

Check middle

• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Review: Binary Search

mid = n//2

If item < L[mid], then need to
search in L[:mid]

• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Review: Binary Search

mid = n//2

If item > L[mid], then need to
search in L[mid+1:]

Review: Binary Search

There is one small
problem with our

implementation. List
splicing is O(n)! See

Jupyter for improvement.

Analysis of Binary Search
• Within a recursive call in our improved approach:

• Constant number of steps (independent of): just 1 comparison

• Therefore total number of steps:
• Size of list gets cut in half in each recursive call: 

 

• This is an time

• Really small even for large !

n

O(# of recursive calls)

n → n/2 → n/4 → n/8 → ⋯ → n/2i = 1

O(log n)

n

 (1 billion) ~ 30log2

Sorting

Sorting
• Problem: Given a sequence of unordered elements, we need to sort

the elements in ascending order.

• There are many ways to solve this problem!

• Built-in sorting functions/methods in Python

• sorted(): function that returns a new sorted list

• sort(): method that mutates and sorts the list its called on

• Today: how do we design our own sorting algorithm?

• Question: What is the best (most efficient) way to sort items?

• We will use Big-O to find out!

n

Selection Sort
• A possible approach to sorting elements in a list/array:

• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the
second position, and so on

Selection Sort
• A possible approach to sorting elements in a list/array:

• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the
second position, and so on

Selection Sort
• A possible approach to sorting elements in a list/array:

• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the
second position, and so on

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Generalize: For each index in the list L, we need to find the min item

in L[i:] so we can replace L[i] with that item

• In fact we need to find the position minIndex of the item that is
minimum in L[i:]

• Reminder: how to swap values of variables a and b?

• Using tuple assignment in Python: a, b = b, a

• Or using a temp variable: temp = a; a = b; b = temp

• Let's implement this algorithm!

i

Selection Sort Code

Selection Sort Analysis
• For , inner loop runs items

• For , inner loop runs times

• ...

• For , inner loop runs times

i = 0 n − 1

i = 1 n − 2

i = n − 1 0

Selection Sort Analysis
• Within the inner loop we have steps - just 1 comparison (constant)

• Thus overall number of steps is sum of inner loop steps

• What is this sum? (Math 200??)

O(1)

(n − 1) + (n − 2) + ⋯ + 0 ≤ n + (n − 1) + (n − 2) + ⋯ + 1

Selection Sort Analysis

S = n + (n − 1) + (n − 2) + ⋯ + 2 + 1
S = 1 + 2 + ⋯ + (n − 2) + (n − 1) + n

2S = (n + 1) + (n + 1) + ⋯ + (n + 1) + (n + 1) + (n + 1)

+

2S = (n + 1) ⋅ n
S = (n + 1) ⋅ n ⋅ 1/2

• Total number of steps taken by selection sort is thus:

• O(n(n + 1)/2) = O(n(n + 1)) = O(n2 + n) = O(n2)

Towards an AlgorithmO(n log n)
• There are many other natural sorting algorithms that compare and

rearrange elements in a slightly different way, but they are still steps

• Any algorithm that takes steps to move each item positions to
its final position will take at least steps as every element can
be away from its position in the worst case.

• To do better than much better than , we need to be able to
move an item to its final position in significantly less steps

• Turns out we can sort in time if we are bit more clever, which
is the best possible: Merge sort algorithm (Invented by John von
Neumann in 1945)

O(n2)

k k
O(n2)

O(n)

n2

O(n log n)

• If we split the list in half, sorting the left and right half are smaller
versions of the same problem

• Algorithm:

• (Divide) Recursively sort left and right half (O(log n))

• (Conquer) Merge the sorted halves into a single sorted list (O(n))

• (More info in extra slides at the end of this lecture!)

Merge Sort: Basic Idea

L
m = n//2

0 n = len(L)

12 2 9 4 11 3 1 7 14 5 13

Selection vs Merge Sort in Practice
• Selection sort is and merge sort is time

• But, how different is the performance of each in practice?

• Example: wordList is12,000 words in the book Pride & Prejudice

• miniList and medList are the first 500 and 7000 words
respectively

O(n2) O(n log n)

Selection vs Merge Sort in Practice
• miniList: 500 words

• medList: 7000 words

• wordList: ~12000 words

~10 mins vs 1/3 sec!

Summary: Searching and Sorting
• We have seen algorithms that are

• : binary search in a sorted list

• : linear searching in an unsorted list

• : merge sort

• : selection sort

• Important to think about  

efficiency when writing code!

• More about this in CS136!

O(log n)

O(n)

O(n log n)

O(n2)

Extra Slides

• Problem. Given two sorted lists a and b, how quickly can we merge
them into a single sorted list?

Merging Sorted Lists

merged list c

a

122 94 11

i

31 7 145 13

b

j

Is a[i] <= b[j] ?

• Yes, a[i] appended to c

• No, b[j] appended to c

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?

• Yes, a[i] appended to c

• No, b[j] appended to c

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?

• Yes, a[i] appended to c

• No, b[j] appended to c

2

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?

• Yes, a[i] appended to c

• No, b[j] appended to c

2

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?

• Yes, a[i] appended to c

• No, b[j] appended to c

2 3

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list c k

1

Is a[i] <= b[j] ?

• Yes, a[i] appended to c

• No, b[j] appended to c

2 3 54 7 9 11 12 13 14

• Walk through lists
maintaining current position of
indices

• Compare and ,
whichever is smaller gets put in
the spot of

• Merging two sorted lists into
one is an step algorithm!

• Can use this merge procedure
to design our recursive merge
sort algorithm!

a, b, c

i, j, k

a[i] b[j]

c[k]

O(n)

Merging Sorted Lists

• Base case: If list is empty or
contains a single element: it is
already sorted

• Recursive case:

• Recursively sort left and

right halves

• Merge the sorted lists into a

single list and return it

• Question:

• Where is the sorting
actually taking place?

Merge Sort Algorithm

4 11 1 7 5 13

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

Merge Sort Example

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

31 14132 4 5 7 9 11 12

2 12 4 9 11 135 141 3 7

Merge Sort Example

114

4 11 1 7 5 13

1 13512 2 9 3 147

122 94 11 31 7 145 13

