CS 34
Special Methods & Linked Lists

Announcements & Logistics

Lab 7 and 8 feedback coming soon
HW 8 due tonight at | Ipm (please don't forget the week!)
Lab 9 Boggle

Parts | & 2 (BoggleLetter & BoggleBoard) due Wed/Thur

We will run our tests and return automated feedback, but we won't
assign grades

Part 3 (BoggleGame) due May 4/5

Do You Have Any Questions?

Demo!

F T
K V
E E
0 L

RESET

EXIT

Last [Ime

- Finished implementation of Tic Tac Toe game

- (Fun?) Application of object-oriented design and inherrtance

- Designed to help with the Boggle lab

- Advice as you make your way through the lab:

Isolate functionality and test often (use __Str__ to print values as
needed)

Check individual methods
Discuss logic with partner before writing any code

- Worry about common cases first, but don't forget the “edge” cases

Joday's Plan

* We will build a recursive list class
« Our own implementation of list

» On the way, we will learn how to implement some special (aka magic)

methods which override the behavior of existing operators/functions in Python

- We have already seen some examples: __str

- Automatically called when we use the str() or print() function

- Today we will see:
+ __len__ (called when you use Len function)
+ __contains__ (called when we use 1n operator)

- __getitem__ (called when we index into a sequence using [])

- Many more!

Python's Built-in list Class

Help on class list in module builtins:

« A class with methods

class list(object)
list(iterable=(), /)
(that someone else |
. Built-in mutable sequence.
implemented) L .
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.

Methods defined here:

- pydoc3 list

__add__(self, value, /)
Return self+value.

__contains__(self, key, /)
Return key in self.

I

I

I

I

I

I

|

I

I

|

I

I

I

I

| __delitem__(self, key, /)
| Delete selflkeyl.

I
| eq__(self, value, /)
| Return self==value.
|
I
I
|
I
I
I
I
I
I
I

__ge__(self, value, /)
Return self>=value.

__getattribute__(self, name, /)
Return getattr(self, name).

__getitem__(...)

X.__getitem__(y) <==> xl[y]

__gt__(self, value, /)

What exactly is a list?

- A container for a sequence of values

» Recall that sequence implies an order
- Another way to think about this:

* A chain of values, or a linked list

- Each value has something after it: the rest of the sequence (recursion!)

« How do we know when we reach the end of our list?

- Rest of the list is None

_value _value _value

- El > [>

_rest _rest _rest

Our Own Class L1nkedlL1st

- Attributes:

« value, _rest

- Recursive class:

+ _rest points to another instance of the same class

 Any instance of a class that is created by using another instance of
the class Is a recursive class

_value _value _value

- El > >

_rest _rest _rest

Initializing Our LinkedList

In [1l]: class LinkedList:
"""Implements our own recursive list data structure

__slots___ = ['_value', '_rest']
def init (self, value=None, rest=None): rest Is another
self. value = value e —— instance of our

self. rest = rest LinkedList class

In [2]: myList = LinkedList(5, LinkedList(3, LinkedList(11)))

In [3]: type(myList)

Out[3]: _ main_ .LinkedList

_value _value _value

- El > >

_rest _rest _rest

Special Methods (Review)

e 1nit_ (self, val)
- When is it called?
- When we create an instance (object) of the class

+ Canalsocallitasobj.__init__(val) (where obj isan
instance of the class)

e str__ (self)
 When is it called?

- When we print an instance of the class using print(obj)

« Also called whenever we convert an instance of the class to str;
that is, when we call str function onit: str(obj)

+ Canalsocallitasobj.__str_ ()

Recursive Implementation: __STr_

This is recursion! Since str calls itself. The base
case is implicit when self_rest is None

str() function calls str () method
def str (self):
if self. rest is None:
return str(self. value)
else:
return str(self. value) + ", " + str(self. rest)

myList = LinkedList(5, LinkedList(3, LinkedList(11)))

print (myList) # testing str

_value _value _value

- El > >

_rest _rest _rest

Recursive Implementation: ___ STr_

- What if we want to enclose the elements in the square brackets [.]

- It helps to have a helper method that does the same thing as

__str__ () onthe previous slide, and then call that helper between
concatenating the square brackets

def strElements(self):
if self. rest is None:
return str(self. value)
else:

return str(self. value) + ", " + self. rest. strElements()

def str (self):
return "[" + self. strElements() + "]"

myList = LinkedList (5, LinkedList(3, LinkedList(11)))

print (myList) # testing str

(56, 3, 11}

An Aside: __repr__

* In Labs 8 and 9, we included __repr__ methods in your starter code

+ You do not need to worry about them! (Just ignore these methods in Lab 9!)
-+ For your reference, here is a quick summary:

- Like __str__(),__repr__() returns a string, useful for debugging

- Unlike __str__(),the format of the string is very specific

- __repr__() returns a string representation of an instance of a class that
can be used to recreate the object

repr() function calls __ repr () method
return value should be a string that is a valid Python
expression that can be used to recreate the LinkedList
def repr (self):
return "LinkedList({}, {})".format(self. value, repr(self. rest))

In [62]: myList = LinkedList(5, LinkedList(3, LinkedList(11)))
Notice we did not say
In [64]: myList # testing repr _ ————— print(myList) here

Out[64]: LinkedList(5, LinkedList(3, LinkedList (11, None)))

Special Method:

e len__ (self)

len

- Called when we use the built-in function len() in Python on an
object 0bj of the class: Llen(obj)

+ We can call Len function on any object whose class has the

Llen__ special method implemented

- We want to implement this special method so it tells us the number of

elements in our linked list, e.g. 3 elements in the list below

_value

e

_rest

_value

e

_rest

_value

e

_rest

Implementing Recursively

+ Asour LinkedL1ist class is defined recursively, let's implement the
Llen__ method recursively

» Example of fruitful recursion that returns an int (num of elements)

 What is the base case!

- What about the recursive case?

- Count self (so, +1),and then call len() on the rest of the list!

_value _value _value

- El > [>

_rest _rest _rest

Recursive Implementation: ___len_

Note: It is preferred to use 1S or 1S not
operators (as opposed to == or !=) when
comparing a user-defined object to a
None value. This is because __eq___ and
__Nne___ are also special methods that can
be made to behave differently for classes.

len() function calls len () method
def len (self):
base case: 1'm the last item
if self. rest is None: ————
return 1
else:
same as return 1 + self.rest. len ()
return 1 + len(self. rest)

_value _value _value

—> K] > >

_rest _rest _rest

What About Other Special Methods!?

- What other functionality does the built-in list have in Python that we can
incorporate into our own class?

» Can check if an item is in the list (1N operator): __contalns__

» Concatenate two lists using + : __add__

- Indexalistwith [] : __getitem__

+ Set an item to another val,e.g. myList[2] ="hello":__setitem__

» Compare the values of two lists for equality using == : __€eq

- Reverse/sort a list
- Append an item to the list. append method
» Many others!

* Let's try to add some of these features to our LinkedList

1n Operator: __contains_

« contains__ (self, val)

+ Whenwe say 1T elem 1n seq in Python:
» Python calls the __contains___ special method on seq
- Thatis, seq.__contains__ (elem)

» Thus if we want the 1n operator to work for the objects of our class, we
can do so by implementing the __contains___ special method

- Basic idea:
- “"Walk™ along list checking values
- If we find the value we're looking for, return True
- If we make it to the end of the list without finding Iit, return False

- We'll do this recursively!

1n Operator: __contains_

« contains__ (self, val)

+ Whenwe say 1T elem 1n seq in Python:
» Python calls the __contains___ special method on seq
- Thatis, seq.__contains__ (elem)

» Thus if we want the 1n operator to work for the objects of our class, we
can do so by implementing the __contains__ special method

1in operator calls __ contains () method
def contains (self, val):
if self. value == val:
return True
elif self. rest is None:
return False
else:
same as calling self. contains (val)
return val in self. rest

+ Operator: __add

« add__ (self, other)

- When using lists, we can concatenate two lists together into one
list using the + operator (this always returns a new list)

» To support the + operator in our L1nkedL1st class, we need to
implement __add__ special method

Make the end of our first list point to the beginning of the other
Basic idea:
- Wialk along first list until we reach the end
Set _rest to be the beginning of second list

More recursion!

+ Operator: __add

« add__ (self, other)

- When using lists, we can concatenate two lists together into one
list using the + operator (this always returns a new list)

» To support the + operator in our L1nkedL1st class, we need to

implement __add___ special method

- Make the end of our first list point to the beginning of the other

+ operator calls ___add () method
+ operator returns a new instance of LinkedList
def add__ (self, other):
other is another instance of LinkedList
1f we are the last item in the list
if self. rest is Nonme:
set rest to other
self. rest = other
else:

. , self is the “head” or
else, recurse until we reach the last item besinnin fthe list. Not
self. rest. add (other) €8 g ortne list. INote

return self — that it didn’t change!

|| Operator: __getitem__, _ set_item__

« getitem_ (self, index) and
__setitem_ (self, index, val)

- When using lists, we can get or set the item at a specific index by
using the [] operator (e.g., val = mylist[1] or mylist[2] = newVal)

- To support the [] operatorin our LinkedList class, we need
to implement __getitem__ and __setitem__

Basic idea:
- Walk out to the element at 1ndex
Get or set value at that index accordingly

Recursivel!

|| Operator: __getitem__, _ set_item__

« getitem_ (self, index) and
__setitem_ (self, index, val)

- When using lists, we can get or set the item at a specific index by
using the [] operator (e.g., val = mylist[1] or mylist[2] = newVal)

[] list index notation calls getitem () method
index specifies which item we want
def getitem (self, index):
1f index is 0, we found the item we need to return
if index ==
return self. value
else:
else we recurse until index reaches 0
remember that this implicitly calls getitem
return self. rest[index - 1]

|| Operator: __getitem__, _ set_item__

« getitem_ (self, index) and
__setitem_ (self, index, val)

- When using lists, we can get or set the item at a specific index by
using the [] operator (e.g., val = mylist[1] or mylist[2] = newVal)

[] list index notation also calls __setitem () method
index specifies which item we want, val is new value
def setitem (self, index, val):
1f index is 0, we found the item we need to update
if index ==
self. value = val
else:
else we recurse until index reaches 0
remember that this implicitly calls __ setitem _
self. rest[index - 1] = val

== Operator: __€q

eq__ (self, other)

* When using lists, we can compare their values using the == operator

» To support the == operator in our L1nkedL1ist class, we need to

implement __€q

« We want to walk the lists and check the values

Make sure the sizes of lists match, too

== Operator: __€q

eq__ (self, other)

When using lists, we can compare their values using the == operator

To support the == operator in our LinkedL1st class, we need to

implement __eqQ

== operator calls _eq () method

if we want to test two LinkedLists for equality, we test

if all items are the same

other is another LinkedList

def eq (self, other):

If both lists are empty

if self. rest is None and other.getRest() is Nonme:
return True

W R W

If both lists are not empty, then value of current list elements
must match, and same should be recursively true for
rest of the list
elif self. rest is not None and other.getRest() is not None :
return self. value == other.getValue() and self. rest == other.getRest()

If we reach here, then one of the lists is empty and other is not
return False

Many Other Special Methods

e Examples:

e __eq__ (self, other): x ==y

e __ne__ (self, other): x !I=y

e __1t__ (self, other): x <y

e __gt__ (self, other): x >y

e __add__(self, other) : x + vy

e __sub__(self, other): x -y

e _mul__(self, other): x * vy

e __truediv__(self, other): x /vy

e __pow__(self, other): x **y

Useful List Method: append

* append(self, val)

- When using lists, we can add an element to the end of an existing
list by calling append (mutates our list)

+ Thus append is similarto __add__, except we are only adding a
single element rather than an entire list (so it's a bit easier to
accomplish)

Basic idea:

« Walk to end of list

« Create anew LinkedList(val) and add it to end

Useful List Method: append

* append(self, val)

- When using lists, we can add an element to the end of an existing
list by calling append (mutates our list)

+ Thus append is similarto __add__, except we are only adding a
single element rather than an entire list (so it's a bit easier to
accomplish)

append is not a special method, but it is a method
that we know and love from the Python list class.
unlike add , we do not return a new LinkedList instance
def append(self, val):
1f am at the list item
if self. rest is None:
add a new LinkedList to the end
self. rest = LinkedList(val)
else:
else recurse until we find the end
self. rest.append(val)

Making our List an Iterable

*+ We can iterate over a Python listina for Loop
- It would be nice if we could rterate over our LinkedList in a for loop

- This won't quite work right now

In [108]: for item in myList:
print(item)

TypeError Traceback (most recent call last)
<ipython-input-108-4bf86db75685> in
———-=> 1 for item in myList:

2 print(item)
<ipython-input-104-8a5ab5d1919c> in (self, index)

68 # else we recurse until index reaches 0

69 # remember that this implicitly calls _ getitem
-—=> 70 return self. rest[index - 1]

71

72 # [] list index notation also calls __ setitem () method

TypeError: 'NoneType' object is not subscriptable

Making our List an Iterable

*+ We can iterate over a Python listina for Loop
- It would be nice if we could rterate over our LinkedList in a for loop

- This won't quite work right now

* What do we need!?

+ Next time we will discuss the special method __1ter__

- We will look behind the scenes at a for loop and see how it works!

