CS 34
Graphical Recursion

Announcements & Logistics

Lab 7 has been posted: focuses on recursion

Please complete Task O before you come to lab!
HW 6 due Monday @ | | pm: covers sorting, dictionaries, sets, tuples
Scheduled final: Sun, May 22, 9:30 am, details TBD

CS TA applications due Apr 22nd

Do You Have Any Questions?

Last [Ime

- Discussed more examples with recursion & recursive approach to
problem solving and compared it with iterative approaches

- Recursion helps us better appreciate how to break down a problem into
smaller pieces — decomposition or divide and conquer — which is a
key concept in computer science.We see more of it in CS 136,256

- Finally, even If you never write a recursive program, others willl Can you
find the base case and recursive step!?

Algorithm 1 CAPA

Input: The original variable set V, algorithm A,.
Output: The causal graph G.
Find a causal partitioning {V, V,,V3}on V.
if max{|V1],|V2l,[V3|} = |V then
Return G by running algorithm A, on V.
else
G1=CAPA(V1,A,, 9),
G,=CAPA(V,,A,,0),
G3=CAPA(V3,Ag, 0).
Return G by merging G, G, and G3.
end if

YR AELN T

[Y

- Recursively Learning Causal Structures Using Regression-Based Conditional Independence Test by Zhang et al (2019)

Joday's Plan

* Introduction to Turtle
- Graphical recursion examples

- Understanding function invariance and why it matters when doing
recursion

The Turtle Module

- Turtle is a graphics modaule first introduced in the 1960s by computer
scientists Seymour Papert, Wally Feurzig, and Cynthia Solomon.

- It uses a programmable cursor — fondly referred to as the “turtle” — to
draw on a Cartesian plane (x and y axis.)

pen down

.

Jurtle In Python

+ turtle is available as a built-in module in Python. See the
Python turtle module API for detalls.

« Basic turtle commands:

Use from turtle import * to use these commands:

fd (dist) turtle moves forward by /57

bk (dist) turtle moves backward by sz
lt(angle) turtle turns left zzo/e degrees

rt (angle) turtle turns right azg/ degrees

up () (pen up) turtle raises pen in belly
down () (pen down) turtle lower pen in belly

' pensize (width)

sets the thickness of turtle's pen to widsh

pencolor (color)

sets the color of turtle's pen to color

shape (shp) sets the turtle's shape to s/p

home () turtle returns to (0,0) (center of screen)
clear() delete turtle drawings; no change to turtle's state
reset () delete turtle drawings; reset turtle's state
setup (width, height) create a turtle window of given widsh and height

Basic Turtle Movement

e forward(dist) or fd(dist), left(angle) or
1ltCangle), right(Cangle) or rt(angle),
backward(dist) or bk(dist)

set up a 500x500 turtle window

setup (400, 400)

reset()

fd(100) # move the turtle forward 100 pixels

1t(90) # turn the turtle 90 degrees to the left
£fd(100) # move forward another 100 pixels

complete a square
1t(90)
£4(100)
1£(90)

£4(100)

Drawing Basic Shapes With Turtle

We can write functions that use turtle commands to draw shapes.

For example, here's a function that draws a square of the desired size

def drawSquare(length):

a loop that runs 4 times
and draws each side of the square
for i in range(4):

fd(length)

1€ (90)

Drawing Basic Shapes With Turtle

How about drawing polygons!

def drawPolygon(length, numSides):

for i in range(numSides):
fd(length)
1t (360/numSides)

drawPolygon (80, 3) drawPolygon (80, 10)

Adding Color!

- What if we wanted to add some color to our shapes!

def drawPolygonColor(length, numSides, color):

set the color we want to fill the shape with
fillcolor(color)

begin fill()

for i1 in range(numSides):
fd(length)
1t (360/numSides)

end fill()

drawﬁélygonColor(SO, 10, "gold") drawPoiygonColor(BO, 10, "purple")

Recursive rigures With lurtle

Let's explore how to draw pretty recursive pictures with Turtle
We'll start with figures that only require recursive calls

Below we have a set of concentric circles of alternating colors

Concentric Circles With No Colors

Recursive idea: we have circles within circles, and each circle becomes
successively smaller: Let's first discuss the circles with no coloring
INnvolved

Base case: radius of the circle is so small it's not worth drawing
Recursive step:
Draw a single circle of radius T,

Draw concentric circles starting with an outer circle of a slightly
smaller radius r—C (where C Is any positive number you want to
shrink the radius by)

Concentric Circles

- Function definition of the recursive function.

concentricCircles(radius, thickness)
radius: radius of the outermost circle

- thickness: thickness of the band between circles

Concentric Circle

def concentricCircles(radius, thickness):

base case do nothing

if radius < thickness:
pass

else:

tell the turtle to start drawing and draw a circle
circle(radius)

recursive function call
concentricCircles(radius-thickness, thickness)

- Are we done!

Concentric Circles

concéhtriccircles(300, 30)

Pretty picture, and almost there! But we also need to reposition the
turtle slightly with each recursive call.

Concentric Circle

def concentricCircles(radius, thickness):

base case do nothing
if radius < thickness:
pass
else:
tell the turtle to start drawing and draw a circle
down ()
circle(radius)

reposition the turtle for the next circle

up() # ensure the turtle doesn't draw while repositioning
1t(90)

fd(thickness)

rt(90)

recursive function call
concentricCircles(radius-thickness, thickness)

Concentric Circles

concéhtriccircles(300, 30)

« Great! Now let's add some color:

Concentric Circles With Colors

- Function definition of the recursive function.

concentricCircles(radius, thickness, colorOuter, colorInner)
radius: radius of the outermost circle
- thickness: thickness of the band between circles
colorQuter: color of the outermost circle

colorInner: color that alternates with colorQuter

Concentric Circles: Adding Color

Pretty much everything about the base case and recursive step remains

the same. Except now on each recursive call we just swap the color
parameters!

- colorOuter becomes colorlnner and vice versa

- We'll also write a helper function to draw a circle filled in with some
color to clean up the recursive function rtself

Helper Function

def drawDisc(radius, color):

Draw circle of a given radius
and fill it with a given color

put the pen down
down ()

set the color
fillcolor(color)

draw the circle
begin fill()
circle(radius)
end fill()

put the pen up
up ()

(0,0)

Starting position of turtle
Turtle.PenDown() Turtle.PenUp()

(0, -radius)

The Recursive Function

def concentricCircles(radius, thickness, colorOuter, colorInner):
Recursive function to draw concentric circlef with alteXnating
color
if radius < thickness:
pass
else:
drawDisc(radius, colorOuter)
1t(90)
fd(thickness)
rt(90)
concentricCircles(radius-thickness, thickness, colorInner, colorOuter)

Concentric Circles

concéﬁtricCircles(BOO, 30, "gold", "purple")

Invariance of Functions

- A function is invariant relative to an object’s state If the state of the
object is the same before and dfter a function is invoked

» Right now our concentricCircles function is not invariant with
respect to the position of the turtle (the turtle does not end were It
starts)

- How can we make it invariant, that is, return the turtle to starting
position?

def concentricCircles(radius, thickness, colorOuter, colorInner):

Recursive function to draw concentric circles with alternating
color

if radius < thickness:
pass
else:
drawDisc(radius, colorOuter)
1t(90)
fd(thickness)
rt(90)
concentricCircles(radius-thickness, thickness, colorInner, colorOuter)

Invariant Concentric Circles

- Ensuring that we "undo" turtle movements that happened before the
recursive call, after the recursive call, results in invariance

» Rule of thumb: always return turtle to starting position

def concentricCircles(radius, thickness, colorOuter, colorInner):
Recursive function to draw concentric circles with alternating
color
if radius < thickness:
pass
else:
drawDisc(radius, colorOuter)
1t(90)
fd(thickness)
rt(90)
concentricCircles(radius-thickness, thickness, colorInner, colorOuter)
move turtle back to starting position
1t(90)
bk (thickness)
rt(90)

Invariance of Recursive Functions

- Why do we care about invariance’
- Itis a good property to have for recursive functions
* Is not crucial for correctness when we have a single recursive call

- However, with multiple recursive calls, our graphical functions will
not work properly If it they are not invariant

Let's do an example with multiple recursive calls

- Nested circles (see picture)

Multiple Recursive Call

- Example: Nested circles. Write the following recursive function:

nestedCircles(radius, minRadius, colorOut, colorAlt)
radius: radius of the outermost circle
- minRadius: minimum radius of any circle
colorOut: color of the outermost circle

colorAlt: color that alternates with colorQOut

Nested Circles

 Base case?

« When radius becomes less than minRadius

 Recursive case
Draw the outer circle
Position turtle for recursive calls

How many recursive calls!

radius

radius/2

Starting position of turtle

nestedCircles(300, 37.5)

Nested Circles

 Recursive case

- Draw the outer circle

- Position turtle for right recursive subcircle

def nestedCircles(radius, minRadius, colorOut, colorAlt):
if radius < minRadius:
pass # do nothing
else:
contribute to the solution
drawDisc(radius, colorOut)

save half of radius
halfRadius = radius/2

position the turtle at the right place
1t(90); fd(halfRadius); rt(90); fd(halfRadius)

draw right subcircle recursively
nestedCircles(halfRadius, minRadius, colorAlt, colorOut)

Nested Circles

 Recursive case

- Move the turtle to draw left subcircle recursively

def nestedCircles(radius, minRadius, colorOut, colorAlt):
if radius < minRadius:
pass # do nothing
else:
contribute to the solution
drawDisc(radius, colorOut)

save half of radius
halfRadius = radius/2

position the turtle at the right place
1t(90); fd(halfRadius); rt(90); fd(halfRadius)

draw right subcircle recursively
nestedCircles(halfRadius, minRadius, colorAlt, colorOut)

position turtle for left subcircle
bk (radius)

draw left subcircle recursively
nestedCircles(halfRadius, minRadius, colorAlt, colorOut)

Nested Circles

 Recursive case

+ Are we done! Let’s try it

Nested Circles

 Recursive case

* Invariance matters! We must return the turtle to its starting state
to make sure subsequent recursive calls behave correctly

Nested Circles

 Recursive case

- Move turtle back to starting position to maintain invariance

def nestedCircles(radius, minRadius, colorOut, colorAlt):
if radius < minRadius:
pass # do nothing
else:
contribute to the solution
drawDisc(radius, colorOut)

save half of radius
halfRadius = radius/2

position the turtle at the right place
1t(90); fd(halfRadius); rt(90); fd(halfRadius)

draw right subcircle recursively
nestedCircles(halfRadius, minRadius, colorAlt, colorOut)

position turtle for left subcircle
bk (radius)

draw left subcircle recursively
nestedCircles(halfRadius, minRadius, colorAlt, colorOut)

bring turtle back to start position
fd(halfRadius); 1t(90); bk(halfRadius); rt(90)

nestedCircles(300, 300) nestedCircles(300, 150) nestedCircles(300, 75)

nestedCircles(300, 75)

................0.........‘"“’..@@@@@@@.

A A AD | AD AN A >

Next [Ime

+ Next time:We'll wrap up recursion with a few more examples!

AA TANWANWAWA AA A‘ AAvAA AAvAA AA
AV’AVA AVA'AVA AVxVA AV’AVA AVAvAVA AV’AVA AVAvAVA AVxVA

