
CS 134:
Graphical Recursion

Announcements & Logistics
• Lab 7 has been posted: focuses on recursion

• Please complete Task 0 before you come to lab!

• HW 6 due Monday @ 11 pm: covers sorting, dictionaries, sets, tuples

• Scheduled final: Sun, May 22, 9:30 am, details TBD

• CS TA applications due Apr 22nd

Do You Have Any Questions?

Last Time
• Discussed more examples with recursion & recursive approach to

problem solving and compared it with iterative approaches

• Recursion helps us better appreciate how to break down a problem into

smaller pieces — decomposition or divide and conquer — which is a
key concept in computer science. We see more of it in CS 136, 256

• Finally, even if you never write a recursive program, others will! Can you
find the base case and recursive step?

- Recursively Learning Causal Structures Using Regression-Based Conditional Independence Test by Zhang et al (2019)

Today’s Plan
• Introduction to Turtle

• Graphical recursion examples

• Understanding function invariance and why it matters when doing

recursion

The Turtle Module
• Turtle is a graphics module first introduced in the 1960s by computer

scientists Seymour Papert, Wally Feurzig, and Cynthia Solomon.

• It uses a programmable cursor — fondly referred to as the “turtle” — to

draw on a Cartesian plane (x and y axis.)

• turtle is available as a built-in module in Python. See the
Python turtle module API for details.

• Basic turtle commands:

Turtle In Python

down()
up()

Basic Turtle Movement
• forward(dist) or fd(dist), left(angle) or

lt(angle), right(angle) or rt(angle),
backward(dist) or bk(dist)

Drawing Basic Shapes With Turtle
• We can write functions that use turtle commands to draw shapes.

• For example, here’s a function that draws a square of the desired size

Drawing Basic Shapes With Turtle
• How about drawing polygons?

Adding Color!
• What if we wanted to add some color to our shapes?

Recursive Figures With Turtle
• Let’s explore how to draw pretty recursive pictures with Turtle

• We’ll start with figures that only require recursive calls

• Below we have a set of concentric circles of alternating colors

Concentric Circles With No Colors
• Recursive idea: we have circles within circles, and each circle becomes

successively smaller. Let’s first discuss the circles with no coloring
involved

• Base case: radius of the circle is so small it’s not worth drawing

• Recursive step:

• Draw a single circle of radius r,

• Draw concentric circles starting with an outer circle of a slightly

smaller radius r-c (where c is any positive number you want to
shrink the radius by)

concentricCircles(radius, thickness)

• radius: radius of the outermost circle

• thickness: thickness of the band between circles

Concentric Circles
• Function definition of the recursive function.

Concentric Circle

• Are we done?

Concentric Circles

• Pretty picture, and almost there! But we also need to reposition the
turtle slightly with each recursive call.

Concentric Circle

Concentric Circles

• Great! Now let’s add some color.

concentricCircles(radius, thickness, colorOuter, colorInner)

• radius: radius of the outermost circle

• thickness: thickness of the band between circles

• colorOuter: color of the outermost circle

• colorInner: color that alternates with colorOuter

Concentric Circles With Colors
• Function definition of the recursive function.

Concentric Circles: Adding Color
• Pretty much everything about the base case and recursive step remains

the same. Except now on each recursive call we just swap the color
parameters!

• colorOuter becomes colorInner and vice versa

• We’ll also write a helper function to draw a circle filled in with some
color to clean up the recursive function itself

Helper Function

(0,0)

(0, -radius)

Starting	position	of	turtle

The Recursive Function

Concentric Circles

Invariance of Functions
• A function is invariant relative to an object’s state if the state of the

object is the same before and after a function is invoked

• Right now our concentricCircles function is not invariant with

respect to the position of the turtle (the turtle does not end were it
starts)

• How can we make it invariant, that is, return the turtle to starting
position?

Invariant Concentric Circles
• Ensuring that we "undo" turtle movements that happened before the

recursive call, after the recursive call, results in invariance

• Rule of thumb: always return turtle to starting position

Invariance of Recursive Functions
• Why do we care about invariance?

• It is a good property to have for recursive functions

• Is not crucial for correctness when we have a single recursive call

• However, with multiple recursive calls, our graphical functions will

not work properly if it they are not invariant

• Let's do an example with multiple recursive calls

• Nested circles (see picture)

nestedCircles(radius, minRadius, colorOut, colorAlt)

• radius: radius of the outermost circle

• minRadius: minimum radius of any circle

• colorOut: color of the outermost circle

• colorAlt: color that alternates with colorOut

Multiple Recursive Call
• Example: Nested circles. Write the following recursive function:

Nested Circles
• Base case?

• When radius becomes less than minRadius

• Recursive case

• Draw the outer circle

• Position turtle for recursive calls

• How many recursive calls?

nestedCircles(300, 37.5)

radius/2

radius/2radius/2 radius

Starting	position	of	turtle

Nested Circles
• Recursive case

• Draw the outer circle

• Position turtle for right recursive subcircle

• Recursive case

• Move the turtle to draw left subcircle recursively

Nested Circles

Nested Circles
• Recursive case

• Are we done? Let’s try it!

Nested Circles
• Recursive case

• Invariance matters! We must return the turtle to its starting state
to make sure subsequent recursive calls behave correctly

Nested Circles
• Recursive case

• Move turtle back to starting position to maintain invariance

nestedCircles(300, 300) nestedCircles(300, 150) nestedCircles(300, 75)

nestedCircles(300, 75)

Next Time
• Next time: We’ll wrap up recursion with a few more examples!

