
CS 134:

Recursion (2)

Announcements & Logistics
• Lab 6 due today/tomorrow 10 pm

• Remember to test your hIndex function thoroughly

• What are some good test cases?

• Empty tuples, Singletons, tuples of zeroes

• Tuples with duplicate citation counts

• Is there a default return value outside conditionals?

• If matplotlib is complaining, you can always use lab machines

• HW 6 will be posted this afternoon

• Covers sorting, dictionaries, sets

Do You Have Any Questions?

• A recursive function is a function that calls itself

• A recursive approach to problem solving has two main parts:

• Base case(s). When the problem is so small, we solve it

directly, without having to reduce it any further

• Recursive step. Does the following things:

• Performs an action that contributes to the solution

• Reduces the problem to a smaller version of the same

problem, and calls the function on this smaller subproblem

• The recursive step is a form of "wishful thinking” (also called the
inductive hypothesis)

Recap: Recursive Approach to Problem Solving

• Write a recursive function that prints integers from 1 up to n
(without using any loops)

• Recursive definition of countUp:

• Base case: n = 0, do nothing

• Recursive rule: call countUp(n-1), print(n)

Review: countUp(n)

Function Frame Model to
Understand countUp

countUp(3)

3n

if n < 1:

 pass # do nothing

 else:

 countUp(n-1)

 print(n)

countUp(2)

2n

if n < 1:

 pass # do nothing

 else:

 countUp(n-1)

 print(n)

countUp(1)

1n

if n < 1:

 pass # do nothing

 else:

 countUp(n-1)

 print(n)

countUp(0)

0n

if n < 1:

 pass # do nothing

 else:

 countUp(n-1)

 print(n)

Base case reached!

Implicit	return

>>> countUp(3)

1
2
3

Implicit	returnImplicit	return Implicit	return

Recursion GOTCHAs!

• If the problem that you are solving recursively is not getting

smaller, that is, you are not getting closer to the base case ---
infinite recursion!

• Never reaches the base case

GOTCHA #1

def countUpGotcha(n):

 '''Prints ints from 1 up to n’''

 if n < 1:

 pass # do nothing

 else:

 countUpGotcha(n)

 print(n)

Subproblem not getting smaller!

• Missing base case/ unreachable base case--- another way to
cause infinite recursion!

GOTCHA #2

def printHalvesGotcha(n):

 if n > 0:

 print(n)

 printHalvesGotcha(n/2)

Always true!

• In practice, the infinite recursion examples will terminate
when Python runs out of resources for creating function
call frames, leads to a "maximum recursion depth
exceeded" error message

"Maximum recursion  
depth exceeded"

Today’s Plan
• Comparing iterative vs. recursive ideas and discussing trade offs

• Some live coding involving the implementation of recursive vs.

iterative functions

Iterative Approach to sumList
• Goal: write a function to sum up a list of numbers

• Iterative approach

Recursive approach to sumList
• Let’s say the name of our list is numList
• Base case: numList is empty, return 0

• Recursive rule: return first element of numList plus result from

calling sumList on rest of the elements of the list.

• One way to think of the recursive rule: say the list has numbers
[6, 3, 6, 5]

• sum([6, 3, 6, 5]) = 6 + sum([3, 6, 5])

• sum([3, 6, 5]) = 3 + sum([6, 5])

• sum([6, 5]) = 6 + sum([5])

• sum([5]) = 5 + sum([])

• And for the base case we have sum([]) returns 0

Recursive approach to sumList

What’s The Big Deal With Recursion?
• So far, it seems like there’s not a whole lot to gain from learning

recursion if we already know about iterative methods

• However, in some cases you’ll find that the recursive solution can be

described in a more elegant manner, resulting in fewer lines of code

• And fewer lines of code often correlates with less debugging!

• We’ll start simple and build up to a scenario that demonstrates a

tangible benefit to learning recursion

A Simple Real World Task
• Consider trying to find a key that is lost in a pile of boxes within

boxes.

• It seems like a silly analogy to begin with, but we’ll see that this task

is quite similar to trying to find a file on your computer!

Credit to Aditya Bhargava for the nice illustrations

Comparing Approaches To Finding The Key
• In this case, it’s much easier to describe the algorithm using a

recursive approach

Iterative Approach Recursive Approach

Searching For A File On Our Computer
• We’ll now do a Jupyter notebook exercise to compare iterative

and recursive approaches to finding a file on our computer —
instead of boxes within boxes, we’ll have folders within folders
getting in the way of finding the picture of a puppy

Pros and Cons of Recursion
• Pros:

Can lead to syntactically simpler programs

Many tasks, such as exploring and building file systems, computer networks,
or data structures used in machine learning, are best written as recursive
programs

Because of the first 2 points, you will often see a lot of recursive computer
code or pseudocode out in the real world

• Cons:

Recursive procedures often have more computational overhead than
iterative ones because of repeated function calls

Recursion has a steeper learning curve (but can be very rewarding once you
get the hang of it — simplifies notation, amount of code you write, etc.)

To understand recursion you must understand recursion (an old CS folklore
joke about the steep learning curve)

Next Time
• Turtle and graphical recursion!

