
CS 134: 
Dictionaries & Comparison to Lists

Announcements & Logistics
• Practice midterm on Glow

• Two versions: with and without solutions
• Midterm from F18 with slight modifications to fit our syllabus

• Lab 5 will be a short debugging lab released today
• Expect most people to finish it during scheduled lab period

• Midterm: Thu Mar 17th. Slots: 6 - 7:30 pm, 8 - 9:30 pm in
Wachenheim B11/002

• One room reserved for reduced distractions/extra time

• Midterm review: Tue Mar 15th, 7 - 8:30 pm in TPL 203
• Try to review practice midterm before then!

Do You Have Any Questions?

Midterm Material
• Labs 1-4

• Lab 1: Intro to Python
• Lab 2: Day of the week (if else statements)
• Lab 3: Word puzzles (strings and loops)
• Lab 4: Every vote counts (lists, strings, loops)

• Homeworks 2-5
• Lectures 1-15 + Jupyter notebooks
• Book: parts of Ch 1, 2, 3, 5, 8, 9 10, 12 (we won’t ask questions directly

from the book)

Midterm Topics
• Variables, Types & Arithmetic Operators (%, //, /, etc)
• Functions, Booleans and Conditionals (if elif else)
• Iteration: for loops, while loops, nested loops, list comprehensions
• Sequences:

• Operators: +, [], [:], * , in/not in, etc
• Strings: string methods, iteration, etc
• Lists: list methods (append, extend), iteration, lists of lists, etc
• Ranges and tuples

• File reading: with … as block
• Mutability and aliasing implications
• Misc: doctests, simplification of verbose code

Last Time
• Discussed stable sorting and ways to override it using key function

• Introduced a new data structure: dictionary

• unordered, mutable key, value pairs

• Keys must be immutable and unique, while values need not be

• E.g., a dictionary storing key-value pairs of names and ages:
{“Harry”: 12, “Hermione”: 12, “Hagrid”: 60}

Today’s Plan
• Discuss dictionaries in more detail with examples
• Learn about dictionary methods such as .get()

• Use dictionaries to find the most frequent words from a wordList
• Examine differences between storing data as lists/nested lists vs.

dictionaries

Recap: Dictionaries
• A dictionary is a mutable collection that maps keys to values

• Enclosed with curly brackets, and contains comma-separated items

• An item in the dictionary pair is a colon-separated key, value pair.

• There is no ordering between the keys of a dictionary!

• Keys must be an immutable type such as ints, strings, or tuples

• Keys of a dictionary must be unique: no duplicates allowed!

• Values can any Python object (numbers, strings, lists, tuples, etc.)

key value

Accessing Items in a Dictionary
• Dictionaries are unordered so we cannot index into them: no notion of

first or second item, etc.
• We access a dictionary using its keys as the subscript

• If the key exists, its corresponding value is returned
• If the key does not exist, it leads to a KeyError

value associated with key '60606'

Adding a Key, Value Pair
• Dictionaries are mutable, so we can add items or remove items from it
• To add a new key, value pair, we can simply assign the key to the value

using: dictName[key] = value

• If the key already exists, an assignment operation as above will overwrite its
value and assign it the new value

Add key, value pair '11777': 'Port Jefferson'

Operations on Dictionaries
• Just like sequences, we can use the len() function on dictionaries to find

out the number of keys it contains
• To check if a key exists (or does not exist) in a dictionary, we can use the
in (not in) operator respectively

Should always check if a key exists before
accessing it's value in a dictionary

Creating Dictionaries
• Several ways to create dictionaries:

• Direct assignment: provide key, value pairs delimited with { }
• Start with empty dict and add key, value pairs

• Empty dict is {} or dict()
• Apply the built-in function dict() to a list of tuples

Note: keys may be
listed in any order

• Direct assignment: provide key, value pairs delimited with { }
• Start with empty dict and add key, value pairs

• Empty dict is {} or dict()
• Apply the built-in function dict() to a list of tuples

Creating Dictionaries

Note: keys may be
listed in any order

Iterating Over a Dictionary
• Can iterate over the keys of a dictionary directly in a for loop
• Note: In Python 3.6 and beyond, the keys and values of a dictionary

are iterated over in the same order in which they were created.
• In general, this behavior may vary across different Python versions, and

it depends on the dictionary’s history of insertions and deletions.

Dictionary Example: frequency
• Let’s write a function frequency that takes as input a list of words
wordList and returns a dictionary freqDict with the unique
words in wordList as keys, and their number of occurrences in
wordList as values

• For example if wordList is:  
 
['hello', 'world', ‘hello', 'earth', 'hello', 'earth'] 
 
the function should return a dictionary with the following items:

 {'hello': 3, 'world':1, 'earth': 2}

Dictionary Example: frequency
• Let’s write a function frequency that takes as input a list of words
wordList and returns a dictionary freqDict with the unique
words in wordList as keys, and their number of occurrences in
wordList as values

Useful Dictionary Method: .get()
• The following code pattern is extremely common when using

dictionaries: 

if aKey is not in myDict:

 myDict[aKey] = initVal # add key

else: # if already exists

 myDict[aKey] += step # update val

• Instead of using if, else to do above, it is preferable to use
the .get() method for dictionaries instead

• get() method is an alternative to using subscript notation [] to get
the value associated with a key in a dictionary without checking for its
existence

• It takes two arguments: a key, and an optional default value to use if the
key is not in the dictionary

• It returns the value associated with the given key
• If key does not exist it returns the default value (if given), otherwise

returns None.
• Syntax: val = myDict.get(aKey, defaultVal) 
 
 
  key whose value we are

looking for in myDict
if key doesn't exist, return

this default value

Useful Dictionary Method: .get()

• get() method does not modify the dictionary it is called on 
 

Useful Dictionary Method: .get()

Example: frequency with .get()
• Let's rewrite frequency function using .get() instead of if else

• What should we write instead inside the for loop?

Dictionary Methods: keys(), values(), items()
• Dictionary methods keys(), values(), items(): return a (list

like) object containing only the keys, values, and items, respectively.

Note: Iterating over/membership in Dicts

Image Source: (http://cs111.wellesley.edu/spring19)

By default loops and membership operators iterate over keys in the
dictionary. Hence, we rarely need to use .keys() explicitly.

http://cs111.wellesley.edu/spring19

Summary of Dictionary Methods

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Dictionaries and Mutability
• Dictionaries are mutable

• Has implications for aliasing!

>>> myDict = {1: 'a', 2: 'b', 3: 'c'}

>>> newDict = myDict # alias!

>>> newDict[4] = ‘d'

>>> myDict # changes as well

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

• Note: dictionary keys must be immutable

• Cannot have keys of mutable types such as list
• Dictionary values can be any type (mutable values such as lists)

Dictionary Comprehensions
• Similar to list comprehensions, useful for mapping and filtering
• Remember: when iterating over a dictionary, we are iterating over its

keys (in the order of creation)

Sorting Operations with Dictionaries

• Let’s say we’re developing a Scrabble app
• We can store the score for each letter as a dictionary as below

• If we call the sorted() function on a dictionary, it returns an
ordered list of all the keys.

Sorting Operations with Dictionaries
• Let’s say we’re developing a Scrabble app
• We can store the score for each letter as a dictionary as below

• By default, if we call the sorted() function on a dictionary, it
returns an ordered list of all the keys.

Sorting By Value

• However, this behavior isn’t super interesting in our case. What if we
wanted to sort on the scores of the letters (from highest to lowest)
instead?

• This known as a sort-by-value as opposed to sort-by-key

• As before, using sorted() with a key function (not be confused
with the keys in the dictionary) comes in handy.

• We’ll need to spend just a little more effort to come up with a
suitable function

• Ex: Jupyter notebook

Sorting By Value
• We first use the items() method to generate a list of tuples, where

each tuple is a key-value pair
• We then sort this list based on value (second element of each tuple.)

• We can also use a list comprehension after to extract just the keys if
desired.

Advantages of Using Dictionaries
• Easy access based on keys (some sort of named reference) rather

than indices (referenced by position in the list)
• For example, to access the Scrabble score for ‘p’using a dictionary

we simply ask for scrabbleScore[‘p’]

• In contrast when the letters and scores are stored as two ordered lists

(or even as a list of lists) that looks like this:

• We now have to be able to “recall” or find where‘p’ is located in
these lists and then extract its corresponding score.

Advantages of Using Dictionaries
• Side-by-side this is what that would look like

• Though list access seems like a minor notational inconvenience, it also has
computational implications

• Every time we try to find the position of a letter, we are actually looping
over each letter until we find the one we’re looking for (in fact, we could
have re-written the list access explicitly using a loop.)

• The dictionary access on the other hand instantly knows what it’s looking for

Advantages of Using Dictionaries
• Let’s see how this difference plays out when we ask the computer to

do 6 million queries (people across the world play a lot of Scrabble!)
• We’ll use our old friend the time module for this

• Ex: Jupyter notebook

Advantages of Using Dictionaries
• Even in this really simple case, dictionaries give a 4x speed-up!

Benefits of Dictionaries
• Dictionaries can be a more efficient alternative to lists for some operations
• When we insert into an ordered sequence like a list

• We need to "move over" all elements to make space
• This is an expensive operation: worst case (insert at beginning of list)

takes time proportional to number of items stored in list
• When we search for an item in an list:

• If we are not careful we might have to compare to every item stored
• Using a dictionary instead of a list means:

• Can insert more efficiently (without having to move any other item)
• Can support more efficient queries on average (if keys are "hashes" of

values)
• To learn more about about efficiency of data structures, take CS136/CS256!

