CS | 34:
Dictionaries & Comparison to Lists

Announcements & Logistics

* Practice midterm on Glow

e [wo versions: with and without solutions

* Midterm from F 18 with slight modifications to fit our syllabus
Lab 5 will be a short debugging lab released today
Expect most people to finish it during scheduled lab period

Midterm: Thu Mar | /th.Slots: 6 - 7:30 pm, 8 - 9:30 pm In
Wachenheim B11/002

One room reserved for reduced distractions/extra time
Midterm review: Jue Mar |5th, 7 - 8:30 pm in TPL 203

Try to review practice midterm before then!

Do You Have Any Questions!?

Midterm Material

Labs |-4
Lab |:Intro to Python
Lab 2: Day of the week (if else statements)
Lab 3:Word puzzles (strings and loops)
Lab 4: Every vote counts (lists, strings, loops)
Homeworks 2-5
Lectures |-15 + Jupyter notebooks

Book: parts of Ch |,2,3,5,8,9 10, |2 (we won't ask questions directly
from the book)

Midterm lopics

Variables, Types & Arithmetic Operators (%, //,/, etc)
Functions, Booleans and Conditionals (if elif else)

teration: for loops, while loops, nested loops, list comprehensions

Sequences:
Operators: +,[|,[:],* ,in/not In, etc
Strings: string methods, rteration, etc

|ists: list methods (append, extend), iteration, lists of lists, etc

Ranges and tuples
-lle reading: with ... as block

Mutability and aliasing implications

Misc: doctests, simplification of verbose code

L ast [Ime

Discussed stable sorting and ways to override it using key function
Introduced a new data structure: dictionary

unordered, mutable key, value pairs

Keys must be immutable and unique, while values need not be

E.g, a dictionary storing key-value pairs of names and ages:

{“Harry”: 12, “Hermione”: 12, “Hagrid”: 60}

Jloday's Plan

Discuss dictionaries iIn more detail with examples
Learn about dictionary methods such as «get ()
Use dictionaries to find the most frequent words from a wordList

Examine differences between storing data as lists/nested lists vs.
dictionaries

Recap: Dictionaries

* A dictionary is a mutable collection that maps keys to values

Enclosed with curly brackets, and contains comma-separated items
* An item In the dictionary pair is a colon-separated key, value pair.

 There is no ordering between the keys of a dictionary!

sample dictionary
zipCodes = {'01267': 'Williamstown', '60606': 'Chicago’,
'48202"': 'Detroit', '97210': 'Portland'}

key value

Keys must be an immutable type such as ints, strings, or tuples
Keys of a dictionary must be unique: no duplicates allowed!

Values can any Python object (numbers, strings, lists, tuples, etc.)

Accessing [tems In a Dictionary

« Dictionaries are unordered so we cannot index into them: no notion of
first or second item, etc.

* We access a dictionary using its keys as the subscript
- If the key exists, its corresponding value is returned

- If the key does not exist, it leads to a KeyError

In [l1]: # sample dictionary
zipCodes = {'01267': 'Williamstown', '60606': 'Chicago’,
'48202"': 'Detroit', '97210': 'Portland’'}

In [2]: # what US city has this zip code?
zipCodes['60606 "]

Out[2]: 'Chicago'

value associated with key '60006°

In [3]: # what US city has this zip code?
zipCodes|['48202 "]

Out[3]: 'Detroit'

Adding a Key,Value Pair

« Dictionaries are mutable, so we can add items or remove items from It

» lo add a new key, value pair, we can simply assign the key to the value
usingg dictNamel[key] = value

In [5]: zipCodes['11777'] = 'Port Jefferson'

In [6]: zipCodes Add key, value pair '11777"': 'Port Jefferson’

Out[6]: {'01267': 'Williamstown',
'60606': 'Chicago’,
'48202"': 'Detroit',
'97210': 'Portland',
'11777': 'Port Jefferson'}

- If the key already exists, an assignment operation as above will overwrite Its
value and assign it the new value

Operations on Dictionaries

+ Just like sequences, we can use the len() function on dictionaries to find
out the number of keys It contains

 To check If a key exists (or does not exist) in a dictionary, we can use the
1n (not 1n) operator respectively

In [6]: zipCodes In [8]: '90210' in zipCodes
Out[6]: {'01267': 'Williamstown', Out[8]: False
'60606': 'Chicago’,
'48202"': 'Detroit’, ' o _
'97210': 'Portland', In [9]: 01267 in leCOdeS

'11777': 'Port Jefferson'} Out[9]: True

In [7]: len(zipCodes)
Out[7]: 5

Should always check if a key exists before
accessing it's value In a dictionary

Creating Dictionaries

- Several ways to create dictionaries:

- Direct assignment: provide key, value pairs delimited with { }

- Start with empty dict and add key, value pairs
+ Empty dictis 1} or dict()
- Apply the built-in function dict () to a list of tuples

In [1l]: # direct assignment

scrabbleScore = {'a’':
SRR

H WU
<Q rrQu -

- - - -

Qo

Note: keys may be
isted In any order

Creating Dictionaries

» Direct assignment: provide key, value pairs delimrted with { }
- Start with empty dict and add key, value pairs
+ Empty dictis {} or dict()

- Apply the built-in function dict () to a list of tuples

In [2]: # accumulate in a dictionary
verse = "let it be,let it be,let it be,let it be,there will be an answer,let it be"
counts = {} # empty dictionary
for line in verse.split(','):
if line not in counts:
counts[line] = 1 # initialize count
else:
counts[line] += 1 # update count
counts

Out[2]: {'let it be': 5, 'there will be an answer': 1}

Note: keys may be

In [3]: # use dict() function listed Nwany'order
dict([('a', 5), ('b', 7), ('c', 10)1]) -

Out[3]: {'a's 5, 'b': 7, 'c': 10}

terating Over a Dictionary

- (Can iterate over the keys of a dictionary directly in a for loop

- Note: In Python 3.6 and beyond, the keys and values of a dictionary
are iterated over in the same order in which they were created.

» In general, this behavior may vary across different Python versions, and
it depends on the dictionary’s history of insertions and deletions.

calendar = {'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30,
=May-: 31, Jgun : 30, Jul:: 31,6 Aug:: 31,
'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31}

for day in calendar:
print(day, calendar[day], end=" ")

Jan 31 Feb 28 Mar 31 Apr 30 May 31 Jun 30 Jul 31 Aug 31 Sep 30 Oct 31
Nov 30 Dec 31

Dictionary Example: Trequency

» Let’s write a function T requency that takes as input a list of words
wordList and returns a dictionary freqDict with the unique
words in wordL1st as keys, and their number of occurrences in
wordList as values

* For example If wordList Is;
['"hello', 'world', ‘hello', 'earth', 'hello', 'earth']

the function should return a dictionary with the following items:

{'hello': 3, 'world':1, 'earth': 2}

Dictionary Example: Trequency

» Let’s write a function T requency that takes as input a list of words
wordList and returns a dictionary freqDict with the unique
words in wordL1st as keys, and their number of occurrences in
wordList as values

def frequency(wordList):
"""Given a list of words, returns a dictionary of word frequencies
fregDict = {} # initialize accumulator as empty dict
for word in wordList:
if word not in freqgDict:
fregDict[word] = 1 # add key with count 1
else:
freqDict[word] += 1 # update count
return freqgDict

Useful Dictionary Method: . get ()

he following code pattern Is extremely common when using
dictionaries:

1f aKey 1s not in myDict:
myDict[aKey] = initVal # add key

else: # 1f already exists
myDict[aKey] += step # update val

» Instead of using 1T, else to do above, it is preferable to use
the .get () method for dictionaries instead

Useful Dictionary Method: . get ()

- get () method is an alternative to using subscript notation [] to get

the value associated with a key in a dictionary without checking for its
existence

t takes two arguments: a key, and an optional default value to use If the
ey IS not In the dictionary

t returns the value associated with the given key

f key does not exist it returns the default value (if given), otherwise
returns None.

. Syntax. val = myDict.get(aKey, defaultVal)

key whose value we are if key doesn't exist, return
looking for in myD1ct this default value

Useful Dictionary Method: . get ()

- get () method does not modify the dictionary it is called on

ids = {'rbl7': 'Rohit', 'jral': 'Jeannie',
'sfreund’': 'Steve’', 'lpd2': 'Lida’'}

ids.get('lpd2', 'Ephelia'’)

'Lida’

ids.get('ss32', 'Ephelia')

'Ephelia’

ids # .get does not change the dictionary

{'rbl7': 'Rohit', 'jral': 'Jeannie', 'sfreund': 'Steve’', 'lpd2': 'Lida'}

print(ids.get('ksl23"))

None

—xample: frequency with .get()

- Let's rewrite Trequency function using .get() instead of if else

def frequency(wordList):
"""Given a list of words, returns a dictionary of word frequencies
freghict = {} # initialize accumulator as empty dict
for word in wordList:
if word not in fregDict:
freqDict[word] = 1 # add key with count 1
else:
fregDict[word] += 1 # update count
return freqgDict

+ What should we write instead inside the for loop!?

def frequency(wordList):
"""Given a list of words, returns a dictionary of word frequencies
fregDict = {} # initialize accumulator as empty dict
for word in wordList:
what should we write instead?
fregDict[word] = freqgDict.get(word, 0) + 1
return freqgDict

Dictionary Methods: keys(), values(), items()

- Dictionary methods keys (), values(),items(): return a (list
ike) object containing only the keys, values, and items, respectively.

calendar = {'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30,
sMays i3l e dan e 30 il i Ang s 3
‘Sep" ¢« 30, "‘Oct': 31, Nov': 30, Dec : 31}

calendar.keys()

dict keys(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug’', 'Se
p', 'Oct', 'Nov', 'Dec'])

calendar.values()

dict values([3l, 29 3T, 30 31, 30, 31; 31, 30 31, 30 31))

calendar.items ()

dict items([('Jan', 31), ('Feb', 28), ('Mar', 31), ('Apr', 30), ('May’,
31), ('Jun', 30), ('Jul’', 31), ('Aug', 31), ('Sep', 30), ('Oct', 31),
('Nov', 30), ('Dec', 31)1])

Note: [terating over/membership in Dicts

By default loops and membership operators rterate over keys in the
dictionary. Hence, we rarely need to use . keys () explicitly,

When iterating over the keys in a dictionary, just write
for someKey in someDict:

rather than

for someKey in someDict.keys(): Q

because they have a similar meaning, but the latter creates an unnecessary object.

Similarly, when testing if a key 1s in a dictionary, just write
if someKey in someDict:

rather than

if someKey in someDict.keys(): Q

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Summary of Dictionary Methods

Method Result Mutates
dict?
.keys () Returnsall keysasadict keys object No
.values () Returnsall valuesasadict values object No
.items () Returns (key, value) pairs asadict items object No
.get (key [,val]) Returns corresponding value if key in dict, No

else returns val. The notation [, val] means that
the second argument val is optional and can be
omitted. If it is not specified, it defaults to None.

.pop (key) Removes key:val pair with given key from dict and Yes
returns associated val. Signals KeyError if key

not in dict.

.update(dict2) Adds new key:value pairs from dict2 to dict, Yes
replacing any key:value pairs with existing key.

.clear () Removes all items from the dict. Yes

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Dictionaries and Mutabllity

- Dictionaries are mutable

- Has implications for aliasing!
>>> myDict = {1: 'a', 2: 'b', 3: 'c'}
>>> newDict = myDict # alias!
>>> newDict[4] = ‘d
>>> myDict # changes as well
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
- Note: dictionary keys must be immutable
+ Cannot have keys of mutable types such as list

» Dictionary values can be any type (mutable values such as lists)

Dictionary Comprehensions

» Similar to list comprehensions, useful for mapping and filtering

- Remember: when rterating over a dictionary, we are iterating over Its
keys (in the order of creation)

calendar = {'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30,
eMayes= S Ie et 3Pt sEe S AT R
'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31}

days30 = {k: calendar[k] for k in calendar if calendar[k] == 30}

{'Apr': 30, 'Jun': 30, 'Sep': 30, 'Nov': 30}

Sorting Operations with Dictionaries

Let's say we're developing a Scrabble app

* We can store the score for each letter as a dictionary as below

scrabbleScore = {'a':1 , 'b':3, 'c¢':3, 'd':2, 'e':1l,
‘£':4, 'g':2, 'h':4, '1':1, '3':8,
'k':5, '1':1, 'm':3, 'n':1l, 'o':1l,
'p':3, 'g':10, 'r':1, 's':1, 't':1,
'u':1, 'v':8, 'w':4, 'x':8, 'y':4, 'z 10}

If we call the sorted () function on a dictionary, it returns an
ordered list of all the keys.

Sorting O

berations with Dictionaries

- Let's say we're developing a Scrabble app

* We can store the score for each letter as a dictionary as below

scrabbleScore = {'a’':

1
'f£':4 g':
'k':5, '1':1, '
3 q
1 \"

-
-
-

-
00

-

- By default, if we call the sorted () function on a dictionary, it
returns an ordered list of all the keys.

print (sorted(scrabbleScore))

[lal’ !bl, |c|, !dl, le!,

'f" lg!, 'h', 'i" ljl, lkl, lll, !ml, ln . O) p . q

|SI' Itl’ luI, Ivl’ IWI, lxI’ 'Y', lzl]

Sorting By Value

-+ However; this behavior isn't super interesting in our case.What if we

wanted to sort on the scores of the letters (from highest to lowest)
instead!

- This known as a sort-by-value as opposed to sort-by-key

- As before, using sorted () with a key function (not be confused
with the keys in the dictionary) comes in handy.

- We'll need to spend just a little more effort to come up with a
surtable function

* Ex: Jupyter notebook

Sorting By Value

+ We first use the rtems() method to generate a list of tuples, where
each tuple is a key-value pair

- We then sort this list based on value (second element of each tuple.)

def getScrabbleScore(letterScoreTuple):

Takes a tuple corresponding to (letter, score) and returns the score

return letterScoreTuple[1l]

first use the items method to get a list of (key, value) tuples
and then sort using a key function
scrabbleItems = scrabbleScore.items()

sortedScrabbleItems = sorted(scrabbleItems, key=getScrabbleScore, reverse=True)
print (sortedScrabbleItems[0:3], '...', sortedScrabblelItems[-3:])

[((‘a’, 10), ('2", 10), ('J', 8)] ... [('s’, 1), ('t', 1), (‘u’, 1)]

* We can also use a list comprehension after to extract just the keys it
desired.

Advantages of Using Dictionaries

Fasy access based on keys (some sort of named reference) rather
than indices (referenced by position In the list)

For example, to access the Scrabble score for ‘p ' using a dictionary
we simply ask for scrabbleScore[‘p’]

* |n contrast when the letters and scores are stored as two ordered lists
(or even as a list of lists) that looks like this:

print (letters[0:3], '...', letters[-3:])
print(scores[0:3], '...', scores[-3:])
[la|’ |bl, Icl] s ['X', lY" |z|]

|1, 3, 3) .. |38, 4, 10]

* We now have to be able to “recall” or find where *p’ is located in
these lists and then extract its corresponding score.

Advantages of Using Dictionaries
» Side-by-side this I1s what that would look like

list access
indexP = letters.index('p')
scoreList = scores[indexP]

dictionary access
scoreDict = scrabbleScore['p']

confirm they're the same
scoreDict == scoreLlist

True

- Though list access seems like a minor notational inconvenience, it also has
computational implications

» Every time we try to find the position of a letter, we are actually looping
over each letter until we find the one we're looking for (in fact, we could
have re-written the list access explicitly using a loop.)

» The dictionary access on the other hand instantly knows what it's looking for

Advantages of Using Dictionaries

Let's see how this difference plays out when we ask the computer to
do 6 million queries (people across the world play a lot of Scrabble!)

- We'll use our old friend the t1me module for this

V random letters to query several times
randomLetters = ['a’', 'l1', 'gq', 's', 'y', 'z"']1%¥1000000
print ("Number of queries"”, len(randomLetters))

Number of queries 6000000

Ex: Jupyter notebook

Advantages of Using Dictionaries

» Even in this really simple case, dictionaries give a 4x speed-up!

generate list of letters and scores
letters = list(scrabbleScore.keys())
scores = list(scrabbleScore.values())

time using list operations to compute total score
startTime = time.time()
totalScore = 0

for query in randomLetters:
index = letters.index(query)
totalScore += scores[index]

endTime = time.time()
timeList = endTime - startTime
print ("Time taken using a list", round(timeList, 3), "seconds")

Time taken using a list 2.219 seconds

time using dictionaries to compute total score
startTime = time.time()
totalScore = 0

for query in randomLetters:
totalScore += scrabbleScore[query]

endTime = time.time()
timeDict = endTime - startTime
print ("Time taken using a dictionary", round(timeDict, 3), "seconds")

Time taken using a dictionary 0.589 seconds

Benefits of Dictionaries

Dictionaries can be a more efficient alternative to lists for some operations
When we insert into an ordered sequence like a list
- We need to "move over" all elements to make space

+ This Is an expensive operation: worst case (insert at beginning of list)
takes time proportional to number of items stored in list

When we search for an item in an list:
- If we are not careful we might have to compare to every item stored

Using a dictionary instead of a list means:
» (Can insert more efficiently (without having to move any other item)

+ (Can support more efficient queries on average (if keys are "hashes" of
values)

» To learn more about about efficiency of data structures, take CS136/C5256!

