CS |34
Sequences and Loops

Announcements & Logistics

Homework 3 is out on GLOW, due next Monday @ | | pm
Covers materials through last lecture (conditionals)
Lab | graded feedback will be released today
Instructions on how to view feedback on course webpage under Resources
Lab 2 due today | Ipm / tomorrow | Ipm
No class on Friday!
Lab 3 starter code pushed on Friday
Try to spend 30-60 minutes on it before your scheduled lab
Should be able to do #1-3 in Part |after today’s class

Tuesday late lab starts at 2:35 (not 2:25)

Do You Have Any Questions?

Last [Ime

Looked at more complex decisions in Python
Used Boolean expressions with and, or, not
Chose between many different options in our code

If elif else chained conditionals

Joday's Plan

Start discussing sequences in Python
Focus on strings today
Move on to lists on Monday
Lab 3 covers both!

Discuss slicing and indexing of strings

Introduce for loops as a mechanism to iterate over sequences

Seqguences In Python: Strings

Sequences are an abstract type in Python that represent ordered
collections of elements: e.g, strings, lists, ranges, etc.

Today we will focus on strings (type STr) which are ordered
sequences of individual characters

Consider for example: word = "Hello"

'"H' is the first character of word, '€ is the second character,

and so on

In Computer Science, it Is convention to use zero=indexing,
so we say that "H"' is the zeroth character of word, 'e' is the
first character, and so on

Ve can access each character of a string using these indices

How Do Indices Work!?

Can access elements of a sequence (such as a string) using its index
Indices in Python are both positive and negative

Everything outside of these values will cause an IndexError.

O 1 2 3 4 5 6 7
'"Wi1ll3iams'
8 -7 -6 -5 -4 3 2 -

word = 'Williams'

Accessing Elements of Sequences

In [1]:

In [2]:

Out[2]:

In [3]:

out[3]:

In [4]:

Out[4]:

In [5]:

word = 'Williams'

word[0] # character at 0Oth index?
lwl

word[3] # character at 3rd index?
Ill

word[7] # character at 7th index?

S

word[8] # will this work?

IndexError

ool = O
~J - =

N~
N — W

IS

W W

S O
n -

I
(\®)

|
ok

Length of a Sequence

Python has a built-in Len () function that computes the length of a
sequence such as a string (or a list, which we will see in next lecture)

For a string, Len () simply returns the number of characters
Thus, a string word has (positive) indices
2, 1, 2, ..., len(word)-1

In [6]: len("Williams")

Out[6]: 8

In [7]: len("pneumonoultramicroscopicsilicovolcanoconiosis")

Out[7]1: 45

Negative Indexing

Negative indexing starts from -1, and provides a handy way to access
the last character of a non-empty sequence without knowing its length

0 1 2 3 4 5 6 7
'"Wi1ill1i1ams’
8 76 -5 4 3 2 -1

>>> word = '"Williams'
>>> word[-1]
ISI

Note: Most other languages do not support negative indexing!

Slicing Sequences

We can extract subsequences of a sequence using the slicing operator [:]

For a given sequence var, var[start:end:step]returns a new

sequence starting at index ‘start’ (inclusive), ending at index ‘end’ (exclusive),
using an increment of ‘'step’

+ Example: Suppose we want to extract the substring "Williams' from
‘Williamstown' using slicing operator [:]

- Note: Many more examples in Jupyter notebook!
In [1]: place = "Williamstown"
In [2]: # return the sequence from Oth index up to (not including) 8th

place[0:8:1]

Out[2]: 'Williams'

Slicing Sequences: Using Step

The (optional) third step parameter to the slicing operator determines in
what direction to traverse, and whether to skip any elements while
traversing and creating the subsequence

By default, start = @, end = len(), step = +1 (which means
move left to right in increments of one)

We can pass other step parameters to obtain new sliced sequences

In [3]: place = "Williamstown"

In [4]: place[:8:1] # start is 0, end is 8, step is +1

Out[4]: 'Williams'

In [5]: place[:8:2] # start is 0, end is 8, step is +2

out[5]: 'Wlim'

In [6]: place[::2] # start is 0, end is 12, step is +2

Out[6]: 'Wlimtw'

Slicing Sequences: Optional Step

When the step parameter is set to a negative value it gives a nifty way to
reverse sequences

Note: start and end are interpreted “backwards” when using a
negative step!

In [15]: place[::-1] # reverse the sequence

Out[15]: 'nwotsmailliWw'

In [16]: place[::-2]

Out[1l6]: 'nosali'

In [17]: place[8:0:-1]

Out[1l7]: 'tsmailli' 0123456738 91011
'"'Williamsto n’
“12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1

Testing Membership: 1n Operator

»+ The 1n operator in Python is used to test if a given sequence is a

subsequence of another sequence; returns True or False

In [25]:

out[25]:

In [26]:

Oout[26]:

In [27]:

Out[27]:

In [28]:

Oout[28]:

'Williams' in 'Williamstown'

True

'"'W' in 'Williams'

True

w' in 'Williams' # capitization matters

False

'liam' in 'WilLLiams' # will this work?

False

String Methods: upper(), lower()

- Python provides several convenient methods for manipulating strings

- Methods are like functions, but are applied to specific variables using dot
notation: var.method() (more info on methods coming soon!)

+ Example:The upper () and lower() string methods convert a string
to upper or lowercase respectively; these methods return a new string

In [29]:

In [30]:

Out[30]:

In [31]:

In [32]:

Out[32]:

message = "HELLLOOOO...!!!"

message.lower() # leaves non-alphabets the same

'hellloooco...!!!’

song = "$$ la la la laaa la S..."

song.upper ()

'$$ LA LA LA LAAA LA SS...'

isVowel() function

- Consider two versions of an isVowel() function that takes a character
(a string) as input and returns whether or not it is a vowel

» lgnore case by converting to lowercase using str. lower () method

+ Use 1n operator to simplify code (fewer boolean expressions)

In [33]: def oldIsVowel(char):
"""0ld isVowel function
c = char.lower() # convert to lower case first

return (¢c == 'a’ or c == 'e oOr

C == 1 or C == O Or C ==

u')

In [34]: def isVowel(char):
"""Simpler isVowel function
c = char.lower() # convert to lower case first
return ¢ in 'aeiou'

teration Motivation: Counting Vowels

Problem: Write a function countVowels () that takes a string word
as input and returns the number of vowels in the string (an int)

We can use our isVowel() function to help us

def countVowels(word):

"""Returns number of vowels in the word'"''

pass

>>> countVowels('Williamstown')

4

>>> countVowels('Ephelia')

4

First Attempt with Conditionals

Using conditionals as
shown Is repetitive
and does not
generalize to arbitrary
length words

Note that val += 1

Is shorthand for
val = val + 1

We need something else
that allows us to “loop”
over the characters in an
arbitrary input string

In [35]:

word = 'Williams'
counter = 0
if isVowel (word[0]):
counter += 1
if isVowel (word[1l]):
counter += 1
if isVowel (word[2]):
counter += 1
if isVowel (word[3]):
counter += 1
if isVowel (word[4]):
counter += 1
if isVowel (word[5]):
counter += 1
if isVowel (word[6]):
counter += 1
if isVowel (word[7]):
counter += 1
print (counter)

3

terating with for Loops

»+ One of the most common ways to manipulate a sequence is to

perform some action for each element in the sequence
- This is called looping or iterating over the elements of a sequence

- Syntax of a for loop:

~

for var 1in seq:«—— seqis a sequence (for example, a string)

var is called the loop variable

body of loop
(do something)

terating with for Loops

» As the loop executes, the loop variable (Char in this example) takes

on the value of each of the elements of the sequence one by one

In [37]: # simple example of for loop
word = "Williams"

for char in word:
print (char)

w38 HHHFHPRF S

Counting Vowels

- We can use a for loop to implement our countVowels () function
 Notice how count “accumulates” values in the loop

« We call count an accumulation variable

def countVowels(word):
''"'Takes a string as input and returns
the number of vowels in it'''

count 0 # initialize the counter
lterate over the word one character at a time
for char in word:
if isVowel(char): # call helper function
count += 1
return count

Counting Vowels: Tracing the Loop

def countVowels(word):

* How are the local variables updated as the loop runs?

'""TReturns number of vowels in the word'''

count = 0
for char 1in word:
1f 1sVowel(char):
count += 1

return count

Loop variable

countVowels('Boston')

word

count

char

'‘Boston'

IBI

Counting Vowels: Tracing the Loop

* How are the local variables updated as the loop runs?

def countVowels(word):
'""TReturns number of vowels in the word'''

count = 0

for char in word: countVowels('Boston')

1f 1sVowel(char): word | 'Boston'

count += 1

return count
count 1

Loop variable char B' | 'o'|'s" 't o

Counting Vowels: Tracing the Loop

* How are the local variables updated as the loop runs?

def countVowels(word):
'""TReturns number of vowels in the word'''

count = 0

for char in word: countVowels('Boston')

1f 1sVowel(char): word | 'Boston'

count += 1

return count
count 1

Loop variable char B' o'l 's' 't 'o

Counting Vowels: Tracing the Loop

* How are the local variables updated as the loop runs?

def countVowels(word):
'""TReturns number of vowels in the word'''

count = 0

for char in word: countVowels('Boston')

1f 1sVowel(char): word | 'Boston'

count += 1

return count
count 1

Loop variable char B' o 's'| 't |'o

Counting Vowels: Tracing the Loop

* How are the local variables updated as the loop runs?

def countVowels(word):
'""TReturns number of vowels in the word'''

count = 0

for char in word: countVowels('Boston')

1f 1sVowel(char): word | 'Boston'

count += 1

return count
count 2

Loop variable char B' o 's' t'|'o

Counting Vowels: Tracing the Loop

* How are the local variables updated as the loop runs?

def countVowels(word):
'""TReturns number of vowels in the word'''

count = 0

for char in word: countVowels('Boston')

1f 1sVowel(char): word | 'Boston'

count += 1

return count
count 2

Loop variable char B' o 's' 't o

Exercise: Count Characters

+ Define a function countChar() that takes two arguments, a character and

a word (both strings), and returns the number of times (int) that character
appears in the word (ignoring case).

def countChar(char, word):
"""Counts # of times char appears in word'''
pass

>>> countChar('m', 'ammonia')

2

>>> countChar('a', 'Alabama')

4

>>> countChar('a', 'rhythm')

0

Exercise: Count Characters

* Define a function countChar() that takes two arguments, a character and

a word (both strings), and returns the number of times (int) that character
appears in the word (ignoring case).

def countChar(char, word):
"""Counts # of times char appears in word'''
count = 0 # initialize accumulation var
for letter in word: # letter 1s the loop variable
1f char.lower() == letter.lower():
count += 1 # increment count (accumulate)

return count

Exercise: Vowel Sequences

» Define a function vowelSeq() that takes a string word as input and returns a
string containing all the vowels in word In the same order as they appear.

def vowelSeq(word):

"' "Returns the vowel subsequence in word'''

pass

>>> vowelSeq("Chicago")

140

>>> vowelSeq("protein™)

o€l

>>> vowelSeq("rhythm™)

Exercise: Vowel Sequences

Define a function vowelSeq() that takes a string word as input and returns a
string containing all the vowels in word in the same order as they appear.

- Accumulation variables don't have to be counters! Can accumulate strings as well

def vowelSeg(word):
"""returns the vowel subsequence in word'''

vowels = # accumulation variable
for char in word: # char 1s loop variable
1f isVowel(char): # if char is a vowel
vowels += char # accumulate

return vowels

