
CS134:  
Sequences and Loops

Announcements & Logistics
• Homework 3 is out on GLOW, due next Monday @ 11 pm

• Covers materials through last lecture (conditionals)

• Lab 1 graded feedback will be released today

• Instructions on how to view feedback on course webpage under Resources

• Lab 2 due today 11pm / tomorrow 11pm

• No class on Friday!

• Lab 3 starter code pushed on Friday

• Try to spend 30-60 minutes on it before your scheduled lab

• Should be able to do #1-3 in Part 1after today’s class

• Tuesday late lab starts at 2:35 (not 2:25)

Do You Have Any Questions?

Last Time
• Looked at more complex decisions in Python

• Used Boolean expressions with and, or, not

• Chose between many different options in our code

• If elif else chained conditionals

Today’s Plan
• Start discussing sequences in Python

• Focus on strings today

• Move on to lists on Monday

• Lab 3 covers both!

• Discuss slicing and indexing of strings

• Introduce for loops as a mechanism to iterate over sequences

Sequences in Python: Strings
• Sequences are an abstract type in Python that represent ordered

collections of elements: e.g., strings, lists, ranges, etc.

• Today we will focus on strings (type str) which are ordered
sequences of individual characters

• Consider for example: word = "Hello"

• 'H' is the first character of word, 'e' is the second character,
and so on

• In Computer Science, it is convention to use zero-indexing,
so we say that 'H' is the zeroth character of word, 'e' is the
first character, and so on

• We can access each character of a string using these indices

How Do Indices Work?
• Can access elements of a sequence (such as a string) using its index

• Indices in Python are both positive and negative

• Everything outside of these values will cause an IndexError.

'W i l l i a m s'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

word = 'Williams'

Accessing Elements of Sequences

'W i l l i a m s'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

Length of a Sequence
• Python has a built-in len() function that computes the length of a

sequence such as a string (or a list, which we will see in next lecture)

• For a string, len() simply returns the number of characters

• Thus, a string word has (positive) indices 
 0, 1, 2, ..., len(word)-1

Negative Indexing

'W i l l i a m s'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

• Negative indexing starts from -1, and provides a handy way to access
the last character of a non-empty sequence without knowing its length

>>> word = 'Williams'

>>> word[-1]

's'

Note: Most other languages do not support negative indexing!

Slicing Sequences
• We can extract subsequences of a sequence using the slicing operator [:]

• For a given sequence var, var[start:end:step]returns a new
sequence starting at index ‘start’ (inclusive), ending at index ‘end’ (exclusive),
using an increment of ‘step’

• Example: Suppose we want to extract the substring 'Williams' from
‘Williamstown' using slicing operator [:]

• Note: Many more examples in Jupyter notebook!

Slicing Sequences: Using Step
• The (optional) third step parameter to the slicing operator determines in

what direction to traverse, and whether to skip any elements while
traversing and creating the subsequence

• By default, start = 0, end = len(), step = +1 (which means
move left to right in increments of one)

• We can pass other step parameters to obtain new sliced sequences

Slicing Sequences: Optional Step
• When the step parameter is set to a negative value it gives a nifty way to

reverse sequences

• Note: start and end are interpreted “backwards” when using a
negative step!

'W i l l i a m s t o w n’
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

8 9 10 11

-12 -11-10 -9

Testing Membership: in Operator
• The in operator in Python is used to test if a given sequence is a

subsequence of another sequence; returns True or False

String Methods: upper(), lower()
• Python provides several convenient methods for manipulating strings

• Methods are like functions, but are applied to specific variables using dot
notation: var.method() (more info on methods coming soon!)

• Example: The upper() and lower() string methods convert a string
to upper or lowercase respectively; these methods return a new string

isVowel() function
• Consider two versions of an isVowel() function that takes a character

(a string) as input and returns whether or not it is a vowel

• Ignore case by converting to lowercase using str.lower() method

• Use in operator to simplify code (fewer boolean expressions)

Iteration Motivation: Counting Vowels
• Problem: Write a function countVowels() that takes a string word

as input and returns the number of vowels in the string (an int)

• We can use our isVowel() function to help us 

def countVowels(word):

 '''Returns number of vowels in the word'''

 pass 

>>> countVowels('Williamstown')

4

>>> countVowels('Ephelia')

4

First Attempt with Conditionals
• Using conditionals as

shown is repetitive
and does not
generalize to arbitrary
length words

• Note that val += 1
is shorthand for
val = val + 1

• We need something else
that allows us to “loop”
over the characters in an
arbitrary input string

Iterating with for Loops
• One of the most common ways to manipulate a sequence is to

perform some action for each element in the sequence

• This is called looping or iterating over the elements of a sequence

• Syntax of a for loop: 

for var in seq:

 # body of loop

 (do something)

var is called the loop variable

seq is a sequence (for example, a string)

Iterating with for Loops
• As the loop executes, the loop variable (char in this example) takes

on the value of each of the elements of the sequence one by one

Counting Vowels
• We can use a for loop to implement our countVowels() function

• Notice how count “accumulates” values in the loop

• We call count an accumulation variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 0

'o''B' 's' 't' 'o' 'n'

countVowels('Boston')

word 'Boston'

Counting Vowels: Tracing the Loop

charLoop variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

Exercise: Count Characters
• Define a function countChar() that takes two arguments, a character and

a word (both strings), and returns the number of times (int) that character
appears in the word (ignoring case). 

def countChar(char, word):

 '''Counts # of times char appears in word'''

 pass

>>> countChar('m', 'ammonia')

2

>>> countChar('a', 'Alabama')

4

>>> countChar('a', 'rhythm')

0

Exercise: Count Characters
• Define a function countChar() that takes two arguments, a character and

a word (both strings), and returns the number of times (int) that character
appears in the word (ignoring case).

def countChar(char, word):

 '''Counts # of times char appears in word'''

 count = 0 # initialize accumulation var

for letter in word: # letter is the loop variable

 if char.lower() == letter.lower():

 count += 1 # increment count (accumulate)

 return count

Exercise: Vowel Sequences
• Define a function vowelSeq() that takes a string word as input and returns a

string containing all the vowels in word in the same order as they appear.

def vowelSeq(word):

 '''Returns the vowel subsequence in word'''

 pass

>>> vowelSeq("Chicago")

"iao"

>>> vowelSeq("protein")

"oei"

>>> vowelSeq("rhythm")

""

Exercise: Vowel Sequences
• Define a function vowelSeq() that takes a string word as input and returns a

string containing all the vowels in word in the same order as they appear.

• Accumulation variables don’t have to be counters! Can accumulate strings as well

def vowelSeq(word):

 '''returns the vowel subsequence in word'''

 vowels = "" # accumulation variable

 for char in word: # char is loop variable

 if isVowel(char): # if char is a vowel

 vowels += char # accumulate

 return vowels

