Syllabus

Introduction to Computer Science						
Instructors						
Prof. Andrea Danyluk TCL 305 597-2178 andrea@cs.williams.edu		Prof. Stephen Freund TPL 302 597-4260 freund@cs.williams.edu				
TA Hours Lectures Labs Web Page	will be posted on web page MWF 9-9:50 or 10-10:50 in TCL 202 M 1pm-4pm, M 7pm-10pm, T 1pm-4pm in TCL 217a http://www.cs.williams.edu/~cs134/					
Texts						

We will use the following text book, which is available at the bookstore:

Bruce, Danyluk and Murtagh, Java: An Eventful Approach, Prentice-Hall, 2006.

Course Objectives

This course introduces fundamental ideas in computer science and builds skills in the design, implementation, and testing of computer programs. Students implement algorithms in the Java programming language with a strong focus on constructing correct, understandable, and efficient programs. Students explore the material through specific application areas. Topics covered include object-oriented programming, control structures, arrays, recursion, and event-driven programming. This course is appropriate for all students who want to create software and have little or no prior computing experience.

Course Work

There will be weekly lab programming assignments. All programs will be graded on design, documentation and style, correctness, and efficiency. Programs should be turned in electronically by the due date. We will go over how to submit work in lab.

Attendance in lab is mandatory. Unapproved absence will result in zero credit for that week's lab.

To accommodate your busy schedules and unanticipated obstacles, you may use a maximum of three free late days during the course of the semester. A late day permits you to hand in a lab up to 24 hours late, without penalty. Once those late days are exhausted, late labs will be penalized one letter grade per day. Programs will not be accepted more than four days late. When using a late day, please email Prof. Danyluk to tell us that you are.

There will also be a midterm exam and a final exam, as well as two larger Programming Projects. The first Project will occur before Spring Break, and the second during the last couple weeks of the semester. Homework exercises (non-programming assignments) may be assigned and collected in class periodically and there may be in-class quizzes.

Grades will be determined roughly as follows:

Labs:	30%
Projects:	10%15% each
Midterm:	15%
Final exam:	20%
Homework & other:	5 - 10%

Honor Code _____

Homework and lab assignments are to be the sole work of each student unless the assignment explicitly states otherwise. Students may discuss issues related to an assignment, provided that such discussions are cited in the material turned in. However, students may not collaborate on designing or writing code. Uncredited collaborations will be considered a violation of the honor code and will be handled appropriately. For a full description of the Computer Science Honor Code, please see http://www.cs.williams.edu/the-cs-honor-code-and-computer-usage-policy/. If in doubt of what is appropriate, do not hesitate to ask us.

Tentative Schedule

This will undoubtedly change as we begin to explore these topics.

Date	Mon	Wed	Fri
Feb 6			Introduction
reb o			Preface
Feb 9–Feb 13	Graphics, Events	Variables, Numbers	Conditionals
1 eb 3-1 eb 13	Chapter 1,2	Chapter 3	Chapter 4
Feb 16–Feb 20	Primitive Types	Classes	Winter Carnival
100 10-100 20	Chapter 5	Chapter 6	
Feb 23–Feb 27	Classes	Declarations, Scope	Loops, Active Objects
100 20 100 21	Chapter 7	Chapter 8	Chapter 9
Mar 2–Mar 6	Active Objects	Images	Interfaces
mai 2 mai 0			Chapter 10
Mar 9–Mar 13	GUIs	GUIs	GUIs
Mai 5–Mai 15	Chapter 11		
Mar 16–Mar 20	Recursion	Recursion	Recursion
Mai 10 Mai 20	Chapter 12		
Mar 23–Apr 3	Spring Break	Spring Break	Spring Break
Ann 6 Ann 10	For Loops	2D Arrays	Arrays
Apr 6–Apr 10	Chapter 13	Chapter 14,15	, , , , , , , , , , , , , , , , , , ,
Apr 13–Apr 17	Collections	Inheritance	Strings
Apr 15-Apr 17		Chapter 17	Chapter 16
Apr 20–Apr 24	Strings	Exceptions	Files, Streams
Api 20–Api 24	_	Chapter 18	Chapter 19
Apr 27–May 1	Networks	Networks	OO Design
Apr 27-may 1			Chapter 21
May 4–May 8	Searching	Sorting	Sorting
May 4-May 0	Chapter 20	_	_
May 11–May 15	Advanced Topics	Advanced Topics	Wrap Up

The midterm is scheduled for the evening of Thursday, Mar 19, with a review session at 7:30pm on Mar 18.