
Lab 9
Handout 11

CSCI 134: Spring, 2015

Spam, Spam, Spam

Objective To gain experience with Strings.

Before the mid-90s, Spam was a canned “meat” product. These days, the term “spam” means just
one thing — unwanted email.

This week we build a program that provides insights into how mail programs filter spam. Our spam
filter is rather simple. The user provides a list of words called the filter list. The program searches
the “from” and “subject” headers of all your mail messages and divides your mail into a good list and a
spam list. The spam list contains all the messages that contain one or more words from the filter list,
and the good list contains the messages that do not contain any filter words.

The user interface for the SpamFilter program is shown below:

1



The text fields on the top, left side of the window specify the machine and account from which mail
will be fetched. When the “Get Mail” button is pressed, the program connects to the mail server and
downloads the headers of all available messages.

The program then decides whether each fetched message is a good message or spam, based on what
the user enters in the JTextArea labeled “Filter Terms.” (JTextAreas are just like JTextFields
except that they display more than one line of text.) Each line of text entered in this JTextArea is
treated as an indicator of spam. If the “from” field or the “subject” field of a mail message contains a
substring that is identical to one of these lines, the message is considered spam.

The JComboBox at the bottom of the screen allows the user to switch between displaying the good
mail or the spam in the JTextArea that occupies the center of the program window.

You can use this program to connect to your williams.edu mailbox and filter your own mail
by entering the appropriate mail server name, username, and password into the user interface. We
provide the code to actually communicate with a mail server, and our code does not modify the mailbox
on the server in any way. As a result, you do not need to worry about errors in your program causing
problems with your real mailbox.

To get started, however, we recommend that you use temporary mailboxes we have set up for you
on the mail server fuji.cs.williams.edu. You will connect to that server with the same username
and password that you use to log in on our lab machines. These mailboxes are currently empty, and
you will need to send yourself a few short pieces of mail to test out your program. Your address will
have the form abc3@fuji.cs.williams.edu, where abc3 is replaced with your user name.

If using your own computer, PurpleAir will prevent you from connecting to our server. The
wired network may work, although you may have better luck working in the lab.

Program Structure

Your program will consist of 4 main classes. We will provide one of those (MailConnection) as a
library, so you won’t see it in the BlueJ project window.

2



SpamFilter. This will be the controller class for your program, and we will provide all of the code
for it. This class creates the components of the interface and defines event-handling methods for them.
Since this program does not use the canvas, it extends Controller instead of WindowController.

MailConnection. This class provides methods to contact a mail server through the network and
download messages from the server. As noted above, we will provide the code for this class as a library.

The MailConnection class provides several methods that are used by the Controller.

• public MailConnection(String host, String userName, String password): The con-
structor expects three Strings as parameters. The first must be the name of the mail server to
contact. When using the mailbox we created for you, the host will be fuji.cs.williams.edu,
and the userName and password parameters will be what you use to log in to our lab computers.
If you wish to connect to the campus mail server, the host should be pop.gmail.com, and the
userName and password will be what you use to log into your Williams email account. Note that
the userName should include @williams.edu at the end, as in sfreund@williams.edu.

• public boolean isConnected() Returns true if the program currently has a connection to
the mail server.

• public void disconnect() Closes the connection to the mail server. This does nothing if
there is no active connection.

• public int getNumMsgs() Returns the number of messages in the mailbox you are connected
to. This returns 0 if there is no active connection.

• public String header(int msg) Returns the headers of a mail message identified by the
number passed in. Unlike Java, mailboxes number messages beginning with 1 and going up to
the number of messages contained in the mailbox.
The mail headers are returned in one long string, such as:

Return-Path: <aturner@cs.williams.edu>
Received: from [137.165.8.62] (tcl303.cs.williams.edu [137.165.8.62])
by bull.cs.williams.edu (8.12.3p3/8.12.3) with ESMTP id hADDU9NG013481
for <colloquium@cs.williams.edu>; Thu, 16 Apr 2015 08:30:09 -0500 (EST)
(envelope-from aturner@bull.cs.williams.edu)
Mime-Version: 1.0
Message-Id: <a05200f02bbd9370948a5@[137.165.8.62]>
Date: Thu, 16 Apr 2015 08:30:01 -0500
To: colloquium@cs.williams.edu
From: Amanda Turner <aturner@cs.williams.edu>
Subject: colloquium
Content-Type: multipart/alternative; boundary="=======_-1143392286==_ma======="
Status: RO

Your spam filter will look at only the “From” and “Subject” headers. Part of your job, described
below, is to extract just those headers from the long header list that header returns.
The header method returns an empty string if it is called when there is no connection.

Message. You will construct a Message object for each mail message downloaded from the server.
The class is simple. It has a constructor and three accessor methods:

• public Message(String headers): The constructor expects a String containing the mes-
sage (or at least its header) as a parameter

• public String getFrom(): Returns the “From:” line found in the header of this message.

• public String getSubject(): Returns the “Subject:” line found in the header of this mes-
sage.

3



• public String toString(): Returns the “From” and “Subject” headers as a single string with
a newline between them and a newline at the end.

MessageList. A MessageList holds a list of mail Messages. Internally, it uses an array to keep
track of the members of the collection. To make it possible to create an array of an appropriate size,
the constructor takes the maximum size of the collection as a parameter.

We provide the necessary constructor and an add method to add messages to a message list. You
should write three methods:

public String toString(): This method invokes the toString method of the Message class to
obtain Strings describing each of the messages in the list. It concatenates all of these descrip-
tions together (separated from one another by extra newlines) and returns this large String as
its result.

public MessageList getSpam(String[] filterWords): This method takes an array of Strings
containing one String for each line entered in the filter JTextArea. It returns the spam. To do
this, it creates a new MessageList and adds to it any messages that are spam.

public MessageList getGood(String[] filterWords): This method should take an array of
Strings containing one String for each line entered in the filter JTextArea. It does the same
thing as getSpam, except that it returns the good messages.

Suggestions For Designing These Classes.

• Extracting the “From” and “Subject” headers from the long string that header returns is part of
your task. As shown earlier, the String that header returns actually contains multiple headers
with a newline between each. To find just one header, you should find a string that begins with a
newline character \n followed by “From:” or “Subject:” and ending at the next newline character.
Be sure to handle the special case where the header you are looking for is the last header and
does not end with a newline! You should use a case-insensitive comparison when looking for these
strings, but the string returned from this method should be capitalized as in the original header.

• You will need to determine if a header is spam. You should use String methods to search the
header for the presence of any String in the filter list. You should use a case-insensitive com-
parison for your spam comparisons.
Note that the user may have inadvertently added blank lines to the filter area. When you look for
matches in the filtering methods, you should ignore any empty strings in the array of filter terms.

• You may find it useful to introduce other private methods to keep your code simple and to prevent
repetitive code in several places.

Design

This week we will again require that you prepare a written design for your program before lab. At
the beginning of the lab, the instructor will briefly examine each of your designs to make sure you are
on the right track.

Your design should include the following:

1. A design for the Message class and its three methods.

2. A design for the three methods in the MessageList class. We suggest that you think about
writing an additional method in MessageList that you can use in both filtering methods with
the following declaration:

private boolean matchExists(String[] terms, String searchString)

4



This method will return true if any of the terms appear in searchString.

The more time you spend on your design, the faster you will be able to proceed.

Implementation Strategy

We suggest that you approach this problem in the following order:

• If you plan to use your temporary mailbox on fuji, send yourself a few short pieces of email.

• Download the starter code for this project from the handouts web page.

• Define the Message class. The SpamFilter class is initially set up to use a MailConnection
to download the first message’s header. This header string is used to create a new Message, and
the SpamFilter then displays the results of calling getFrom, getSubject, and toString on
that message. Once you implement the Message methods, the appropriate information should
be displayed for it in the text area. However, none of the filter components will behave properly
yet.

• Once you finish the Message class, open the SpamFilter class and add the following code where
it says “INSERT CODE HERE”:

int numMessages = connection.getNumMsgs();
allMessages = new MessageList(numMessages);
for (int i = 0; i < numMessages; i++) {

Message m = new Message(connection.header(i + 1));
allMessages.add(m);

}
filterMessageList();

This will make the spam filter download all of the messages and then filter the message list
according to which filter is currently selected. You will also need to comment out the lines before
it that downloaded the first message for the previous step.

• Start working on the MessageList and write the toString method. Once the toString
method is implemented, the from and subject lines for all messages downloaded from the server
should appear in the window when you get your mail.

• The last step is to write the two filtering methods. The starter code in the message list contains a
getGood that returns a message list of all messages and getSpam that returns an empty message
list. Change the filter methods in the message list to work properly.

We also include some ideas for optional extensions at the end of this handout.

Submitting Your Work

Once you have saved your work in BlueJ, please perform the following steps to submit your assign-
ment:

• First, return to the Finder. You can do this by clicking on the smiling Macintosh icon in your
dock.

• From the “Go” menu at the top of the screen, select “Connect to Server...”.

• For the server address, type in “Guest@fuji” and click “Connect”.

• A selection box should appear. Select “Courses” and click “Ok”.

• You should now see a Finder window with a “cs134” folder. Open this folder .

5



• You should now see the drop-off folders for the three labs sections. As in the past, drag your
“Lab9Spam” folder into the appropriate lab section folder. When you do this, the Mac will warn
you that you will not be able to look at this folder. That is fine. Just click “OK”.

• Log off of the computer before you leave.

You can submit your work up to 11 p.m. on Wednesday if you’re in the Monday afternoon lab; up
to 6 p.m. on Thursday if you’re in the Monday night lab; and up to 11 p.m. on Thursday if you’re in
the Tuesday lab. If you submit and later discover that your submission was flawed, you can submit
again. We will grade the latest submission made before your lab section’s deadline. The Mac will not
let you submit again unless you change the name of your folder slightly. It does this to prevent another
student from accidentally overwriting one of your submissions. Just add something to the folder name
(like “v2”) and the resubmission will work fine.

Grading Guidelines

As always, we will evaluate your program for both style and correctness. Here are some specific
items to keep in mind and focus on while writing your program:

Style
Descriptive comments
Good names
Good use of constants
Appropriate formatting

Design
General correctness/design/efficiency issues
Conditionals and loops
Parameters, variables, and scoping
Correct use of arrays
Good use of private methods
Good use of strings

Correctness
Extracting from and subject headers
Displaying message list properly
getGood filter
getSpam filter

6



Starter Code

You will write the Message class from scratch, and the following starter code will be given to you
for MessageList. You may examine the SpamFilter code by downloading the starter project, but
you should not need to read that file to complete your design.

public class MessageList {

// array of message objects to keep the list
private Message messages[];

// number of entries being used in the messages array
private int count = 0;

// Constructs a new message collection with the given maximum size.
public MessageList(int maxSize) {

messages = new Message[maxSize];
}

// Add a new message to the list.
public void add(Message newMessage) {

if (count < messages.length) {
messages[count] = newMessage;
count++;

} else {
System.out.println("No More Space in Message List!!!");

}
}

public String toString() {
return "Complete MessageList.toString()";

}

/*
* CHANGE THIS METHOD

* It currently just returns all of the messages.

*/
public MessageList getGood(String[] filterTerms) {

MessageList resultList = new MessageList(messages.length);
for (int i = 0; i < count; i++) {

resultList.add(messages[i]);
}
return resultList;

}

/*
* CHANGE THIS METHOD

* It currently just returns an empty list.

*/
public MessageList getSpam(String[] filterTerms) {

return new MessageList(0);
}

}

7



Optional Extensions

If you wrap up early and would like to extend the SpamFilter, here are two ideas.

Thresholds. Most spam filters only filter mail whose “spam content” is deemed high. A message
with a single spam word may not be spam, but one with perhaps 3 or more almost certainly is. This
helps reduce false positives, in which good mail is marked as spam.

Add a threshold to your filter. In particular, change your program so that it only marks a message as
spam if its headers contain n or more occurrences of spam words. You should change the SpamFilter’s
interface so that the user can configure the threshold n to anywhere between 1 and perhaps 5. (A
JSlider might work well for this.)

Experimenting with Inheritance. Your program’s interface includes several JTextFields each
of which must be placed next to a JLabel describing its function. Rather than creating each of these
separately in your program’s begin method, define a new class of GUI components that combines a
JLabel and a text field in such a way that you can treat them as a single GUI component.

You can create a new class of GUI components that can hold several other components together
by defining a class that extends JPanel. To understand how this works, think about what you would
have done if you decided to create the needed JLabels and JTextFields separately in your begin
method. To ensure that they were kept together in the program’s interface you would create a JPanel
and add them both to the JPanel (which would then in turn be added to the content pane).

Suppose now, that you instead want to define a new class named LabeledTextField designed to
combine a JLabel and a JTextField. If you define the new class as an extension of JPanel this
is quite easy. Since any object of the new class is a JPanel, Swing will let you add the object to the
content pane. Also, since the object is a JPanel, you can include code in the constructor for the new
class that creates a JLabel and a JTextField and adds them to the object being created. Finally,
if you associate the JTextField with an instance variable then you can define a getText method
for the new class which simply returns the result of invoking getText on the JTextField associated
with the instance variable.

Alas, things are made a bit more complicated by the fact that your program requires two JTextFields
and one JPasswordField, all of which need to have JLabels attached to them. You could just de-
fine two separate classes that extend JPanel as described above, but to maximize your exploration of
inheritance we have something more elegent in mind.

First, define a class named LabeledTextComponent. This class has a single purpose: to be ex-
tended by LabeledTextField and LabeledPasswordField. The LabeledTextComponent class
should extend JPanel. It should include an instance variable of type JTextField and a getText
method that returns the String obtained by invoking getText on the instance variable. Its con-
structor, however, will not actually create a text field. Instead, all it will do is create a JLabel
and add it to the JPanel. As a result, the only parameter to the constructor for this class will be
the String to use when creating the JLabel. Thus, the following is a complete implementation of
LabeledTextComponent:

class LabeledTextComponent extends JPanel {

protected JTextField textField;

public LabeledTextComponent(String label) {
add(new JLabel(label));

}

public String getText() {
return textField.getText();

}
}

8



You will define the two desired classes, LabeledTextField and LabeledPasswordField as ex-
tensions of LabeledTextComponent. Each of the constructors for these two classes will take an
integer that determines how wide the field should be and a String that determines what is ini-
tally displayed in the field, as well as the label necessary for the super class. The constructor for
LabeledTextField will create a JTextField and add it to the object being constructed. The con-
structor for LabeledPasswordField will create a JPasswordField and add it to the object being
constructed. Both classes will inherit getText from LabeledTextComponent.

Add these three classes, and change the SpamFilter to use them when building the interface
components in begin.

9


