
Chapter 9

Doomed to Repeat

Looking up synonyms for the word “repetitive” in a thesaurus yields a list that includes the words
“monotonous”, “tedious”, “boring”, “humdrum”, “mundane”, “dreary”, and “tiresome”. This
reflects the fact that in life, repeating almost any activity often enough makes it unpleasant. In
computer programs, on the other hand, repetition turns out to be very exciting. In some sense, it
is the key to exploiting the power of the computer.

To appreciate this, think about how quickly computers can complete the instructions we place
in a program. The speed of a modern computer is measured in gigahertz. That means that such
a computer can perform billions of steps per second. These are very small steps. It may take tens
or hundreds of them to complete a single line from a Java program. Even so, your computer is
probably capable of completing the instructions in millions of lines of Java instructions in seconds.
Any programmer, on the other hand, is unlikely to be fast enough to write a million lines of Java
instructions in an entire lifetime. Basically, a computer can execute more instructions than we can
write for it. This means the only possible way to keep a computer busy is to have it execute many
of the instructions we write over and over and over again.

Programming languages provide constructs called loops to enable us to specify that a sequence
of instructions be executed repetitively. In this chapter, we will introduce one of Java’s looping
constructs, which is called the while loop.

To use while loops or any other looping construct effectively, one must learn to write instructions
that perform useful work when executed repeatedly. Typically, this means that even though the
computer will execute exactly the same instructions over and over again, these instructions should
do something at least slightly different each time they are executed. We will see that this can
be accomplished by writing instructions that depend on variable values or other aspects of the
computer’s state that are modified during their execution. In particular, we will introduce several
important patterns for writing loops including counting loops and input loops.

9.1 Repetition without Loops

Before talking about new Java constructs, we should explore the idea that executing the same
sequence of instructions over and over again does not necessarily mean doing exactly the same
thing over and over again. You have already seen examples of this in many of the programs
we have examined. As a very simple case, consider the numeric keypad program presented in
Figure 3.12. The display produced by this program is shown in Figure 9.1.
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Figure 9.1: A numeric keypad user interface

The buttonClicked method in the program contains just one line of code:

entry.setText( entry.getText() + clickedButton.getText() );

The name associated with the text field displayed at the bottom of the program’s window is entry,
and clickedButton is the formal parameter name associated with the button whose clicking caused
the execution of the buttonClicked method. As a result, each time a button is clicked, its digit
value is appended to the string of digits shown in the text field.

In some sense, every time any button in the keypad is pressed, this program does exactly the
same thing. It executes the single line that forms the body of the buttonClicked method. The
effect of executing this line, however, depends both on which button was just pressed and on what
buttons were previously pressed. Therefore, the behavior that results each time the line is executed
is slightly different.

If the first button pressed is the “1” key, then executing this line will cause a “1” to be displayed
in the text field named entry. If the user next presses the “2” key, the same line will be executed,
but instead of causing “1” to be displayed, the pair “12” will be displayed. Even if the user had
pressed exactly the same key both times, the first execution would display “1” while the second
would display “11”.

The key to the way in which this code’s behavior varies is the fact that it both depends upon
and changes the contents of the text field entry. It accesses the contents of this field using the
getText method and then changes it using setText.

There are many other ways in which we can write code that bears repetition by making the
code both depend upon and change some aspect of the state of the computer. One very common
approach is to write code that depends on and changes the values associated with one or more
variables. To illustrate this, we will consider a rather impractical way to construct the keyboard
shown in Figure 9.1.

The constructor used to create the keypad which was originally presented in Figure 3.12 is
repeated for convenience in Figure 9.2. Ten lines of this code are extremely similar to one another,
but they are not quite identical. We are looking for examples where executing exactly the same
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public NumericKeypad() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT );

contentPane.add( new JButton( "1" ) );
contentPane.add( new JButton( "2" ) );
contentPane.add( new JButton( "3" ) );

contentPane.add( new JButton( "4" ) );
contentPane.add( new JButton( "5" ) );
contentPane.add( new JButton( "6" ) );

contentPane.add( new JButton( "7" ) );
contentPane.add( new JButton( "8" ) );
contentPane.add( new JButton( "9" ) );

contentPane.add( new JButton( "0" ) );

entry = new JTextField( DISPLAY_WIDTH );
contentPane.add( entry );

}

Figure 9.2: Constructor that creates a keyboard interface

instructions over and over again produces useful results, so lets think about how we can replace
these nearly identical instruction with instruction that are actually identical.

The only difference between the lines that invoke contentPane.add is the value that is provided
as a label for the JButtons being constructed. We can eliminate this difference by replacing the
literals "1", "2", etc. with an expression that depends on a variable.

Recall that if buttonNumber is an int variable associated with the value 1, then the expression

"" + buttomNumber

produces the String value

"1"

Therefore, if the value associated with the variable buttonNumber is 1, then the statement

contentPane.add( new JButton( "" + buttonNumber ) );

is equivalent to

contentPane.add( new JButton( "1" ) );

Similarly, if buttonNumber is associated with 2, then the same statement is equivalent to

contentPane.add( new JButton( "2" ) );
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Given these observations, it should be clear that if we initially associate the value 1 with
buttonNumber then we could replace the first nine lines of the code shown in Figure 9.2 with nine
copies of the two instructions

contentPane.add( new JButton( "" + buttonNumber ) );
buttonNumber = buttonNumber + 1;

The result of executing this pair of instructions depends on the value of the variable buttonNumber,
but the instructions also change the value of this variable. As a result, executing one copy of this
pair of instructions will produce a button with the label “1”, executing a second copy will produce
a button displaying “2”, and so on. Thus, nine copies of these two lines can be used to produce
the buttons “1” through “9”.

If we tried to use a tenth copy of these two lines to produce the last button, we would be
disappointed. Executing a tenth copy of these two lines would produce a button labeled with “10”.
Unfortunately, the last button in the keyboard should be labeled with “0” rather than “10”. It is
possible, however, to write two instructions that will correctly generate all ten buttons if executed
ten times.

In Section 7.3.2, we introduced the modulus operator, %. If a and b are integer-valued expres-
sions, then a % b produces the remainder that results when a is divided by b. If we divide any
number between 1 and 9 by 10, then the quotient is 0 and the remainder is just the original number.
If we divide 10 by 10, however, the quotient is 1 and the remainder is 0. Therefore, the expression
buttonNumber % 10 will return the value of buttonNumber if that value falls between 1 and 9 and
0 if the value of buttonNumber is 10.

We can, therefore, use ten copies of the two instructions

contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;

to create the entire keypad as shown in Figure 9.3. The last copy of the statement

buttonNumber = buttonNumber + 1;

is clearly unnecessary, but it accomplishes our goal of replacing the 10 similar instructions in the
original code with 10 identical code segments.

9.2 Worth Your While

You may have the feeling that we didn’t accomplish anything useful in the preceding section.
Replacing 10 somewhat repetitive lines of code with 20 even more repetitive lines is not usually
considered a good thing. The changes we have made, however, put us in position to use a new
Java language construct called the while statement or while loop to make the code required to
construct the keyboard much more compact.

The general form of a while statement is

while ( condition )
statement
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public NumericKeypad() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT );

int buttonNumber = 1;

contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;

entry = new JTextField( DISPLAY_WIDTH );
contentPane.add( entry );

}

Figure 9.3: Extremely repetitive code to create a keyboard interface
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public NumericKeypad() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT );

int buttonNumber = 1;

while ( buttonNumber <= 10 ) {
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;

}

entry = new JTextField( DISPLAY_WIDTH );
contentPane.add( entry );

}

Figure 9.4: Using a while statement to construct a key pad

The keyword while and the condition included are called the loop header and the statement included
is called the loop body. It is very common to use a compound statement formed by placing a series
of statements in curly braces as the body of a while loop. That is, in practice, while statements
are almost always written as

while ( condition ) {
one or more statements

}

The condition included in the header of a while statement must be an expression that returns a
value of the type boolean. When a program’s execution reaches a while statement, the computer
repeatedly executes the statement(s) found in the body of the loop until evaluating the condition
yields false.

To see how to use this construct, recall the code we devised for creating a keypad in the last
section. To draw the keypad, all we did was repeatedly execute the two statements

contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;

by placing 10 copies of these statements in our code. Now, we can replace these 20 lines with the
four line while loop shown in Figure 9.4.

Let us consider how the loop in Figure 9.4 would be executed by a computer. Just before
beginning to execute the while loop, the computer will process the declaration

int buttonNumber = 1;

which initializes buttonNumber to refer to the value 1. Next, the computer will begin the process
of executing the loop by checking to see if the condition buttonNumber <= 10 specified in the loop
header is true. Given that the value 1 has just been associated with buttonNumber, the condition
will be true at this point, and the computer will proceed to execute the two statements in the loop
body. The first of these statements will place the “1” button in the program’s window. The second
statement will change the value associated with buttonNumber from 1 to 2.
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Figure 9.5: Flow of execution through a while loop

After the first execution of the loop body, the computer will again check whether evaluating the
condition of the loop produces true or false. Executing the body will have increased the value
associated with buttonNumber to 2, but it will still be true that buttonNumber <= 10. Accordingly,
the computer will proceed to execute the body a second time, placing the “2” button in the window
and changing the value associated with buttonNumber to 3.

The process will be repeated in very much the same way 7 more times for the buttons “3”
through “9”. After the ninth execution of the loop body, the computer will again verify that the
condition buttonNumber <= 10 is true. The value 10 will be associated with buttonNumber, so it
will proceed to execute the two statements in the loop body a tenth time.

This last execution of the loop places the “0” button on the screen and associates buttonNumber
with the value 11. At this point, the condition buttonNumber <= 10 is no longer true. Therefore,
after the tenth execution of the loop body, the computer will check the condition for the eleventh
time and notice that the condition is now false. This will cause the computer to realize that the
execution of the loop is complete. The machine will proceed to execute the two statements that
follow the loop in the constructor:

entry = new JTextField( DISPLAY_WIDTH );

contentPane.add( entry );

The diagram in Figure 9.5 illustrates the way in which Java executes all while loops.
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Figure 9.6: American Airlines on-line reservation interface

9.3 Count to Ten

The loop we presented in the previous section is an example of a very common and important type
of loop: a loop that counts. In that loop, we counted how many buttons had been displayed to
determine both how to label each button and how many times to execute the body of the loop.
To solidify your understanding of the basics of while loops, we will consider several additional
examples of counting loops before moving on to explore other ways to write loops.

In our first example, we used a counting loop to place buttons in a window. In this section,
we will use very similar loops to place items in pop-up menus. As motivation, imagine that you
decided that a little time in a tropical paradise would be nice and set out to plan a trip to Hawaii.
Among other arrangements, you would have to book a flight. Chances are that you would look for
the best deal you could find on airline websites and travel sites like Orbitz, Kayak, and Travelocity.

On most of these sites, you would encounter an interface similar to that shown in Figure 9.6.
This figure shows the contents of the American Airlines reservation web site captured as a user is
changing the date for the return flight from July 11th to July 12th. The pop-up menu obscures
several of the component displayed beneath it. We have included a slightly enlarged image of these
components below the image of the browser window. We will explore how to write Java code to
create components similar to these in a Java program rather than in a web page.

The interface we have in mind for our Java program is shown in Figure 9.7. This figure includes
two images of the program’s window, one showing all of the components in their idle state and the
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Figure 9.7: A Java version of an airline reservation interface

int buttonNumber = 1;

while ( buttonNumber <= 10 ) {
contentPane.add( new JButton( "" + ( buttonNumber % 10 ) ) );
buttonNumber = buttonNumber + 1;

}

Figure 9.8: A counting loop to create keyboard buttons

other showing one of the menus being used to select a return date.
The interface consists of two, nearly identical rows of components. The top row is intended

for specifying the departure location, date, and time. The bottom row is for the destination and
return flight date and time. Each row contains a JTextField for the departure or destination city,
a few JLabels, and three JComboBoxes. We will focus on the last two JComboBoxes on each row.

Our first goal is to write a loop to fill the menu used to select a date within a month. This is
the menu shown in use in Figure 9.7. The loop we need is almost identical to the loop we used to
create the buttons for our keyboard in Figure 9.4, so we start by considering the exact roles of the
components of that code. The lines of interest are repeated in Figure 9.8.

The variable buttonNumber was used to keep track of how many buttons had been added to
the content pane. We need to keep track of how many dates have been added to the menu we are
creating. Accordingly, the first line of code we need is something like

int date = 1;
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// Fill a menu with the numbers of the days in a particular month

private void fillDateMenu( JComboBox dateMenu, int lengthOfMonth ) {

dateMenu.removeAllItems();

int date = 1;
while ( date <= lengthOfMonth ) {

dateMenu.addItem( "" + date );
date = date + 1;

}
}

Figure 9.9: A method that uses a counting loop to fill a menu with dates

The condition in the loop for keyboard buttons stopped the loop as soon as 10 buttons had
been created. We want our new loop to stop as soon as an entry has been added for every day
of the month. Unfortunately, different months have different numbers of days. So, we assume
that our loop will be preceded by code to associate the appropriate value with a variable named
lengthOfMonth. Then, we can use a loop header of the form

while ( date <= lengthOfMonth ) {

Finally, the body of the loop should contain one statement to add an item to the menu each
time the loop executes and one statement to increase the date variable’s value by 1. Assuming the
menu is named dateMenu, the two instructions

dateMenu.addItem( "" + date );
date = date + 1;

could be used as the body of the loop.1

We can put all these pieces together to form a private method that fills an existing JComboBox
with the list of dates appropriate for a particular month. Figure 9.9 shows the complete code
for such a method. The method is designed so that it can be invoked to update the list of dates
included in the menu whenever the user selects a new month from the associated menu of month
names. It therefore begins by removing any existing entries from the menu and then fills the menu
using the counting loop we have described.

It should be clear that the loops in Figures 9.8 and 9.9 are extremely similar. They both have
the basic form illustrated by the following mix of Java and English:

Associate starting value with a counter variable

while ( counter is no greater than final value desired ) {
Do a bit of interesting work using the counter

Increase the value associated with the counter

}
1This code can be simplified if you are using Java 5.0 or later. The addItem method can now accept numeric

parameter values. Therefore, you can replace the parameter "" + date with just date.
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This, in fact, is the basic form of all counting loops. There are, however, many ways to vary this
basic pattern.

We can reverse the order of the two components of the loop body as long as we adjust the
starting value and the loop condition appropriately. That is, the following loop could be used in
place of the loop used in Figure 9.9:

int date = 0;
while ( date < lengthOfMonth ) {

date = date + 1;
dateMenu.addItem( "" + date );

}

This loop reveals one slightly subtle point about the way in which the condition controls the
execution of the loop. During the final repetition of this loop, the computer first executes the
instruction

date = date + 1;

At this point, the condition date < lengthOfMonth will no longer be true. The computer, how-
ever, does not immediately stop executing the body of the loop. The condition that controls the
execution of a loop is checked exactly once for each repetition of the loop body before the computer
begins to execute the statements in the loop body. Once the computer begins to execute the loop
body, it does not check the condition again until the process of executing the body is complete.
Therefore, even though date becomes equal to lengthOfMonth in the middle of the last execution
of the loop body, the computer will proceed to execute the statement

dateMenu.addItem( "" + date );

placing the last entry in the window.
We don’t always have to count by ones in our loops. Just like the cheer “2, 4, 6, 8, who do we

appreciate”, if we replace the 1 in

date = date + 1;

with some other value we can count using a different increment. This would not be a sensible
change in this loop because we want the menu to contain every number from 1 up to the last day
in the month. But there are many examples where increments other than 1 are useful.

Consider the menus in our program used to indicate the desired departure times for flights.
We would like to fill these menus with one entry for each of the 24 hours in a day. We can
(and shortly will) fill this menu with entries including the suffixes “AM” and “PM” to distinguish
between morning and afternoon departure times. An alternative that avoids these suffixes is to use
“military” or “railroad” time in which the hours are numbered from 1 through 24. In this system,
7AM becomes 700 or “seven hundred hours” while 7PM is 1900 or “nineteen hundred hours.”
Figure 9.10 shows a menu of times built using this system. We can fill such a menu by writing a
loop that counts by 100 instead of 1. The code required is shown in Figure 9.11.

We can even count backwards by decreasing the value associated with the counter variable each
time the loop executes. Of course, we have to associate the counter variable with the largest value
just before the loop and change the condition to test whether we have reached the smallest value.
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Figure 9.10: A menu of hours using 24-hour clock times

JComboBox timeMenu = new JComboBox();

int hour = 100;
while ( hour <= 2400) {

timeMenu.addItem( "" + hour );
hour = hour + 100;

}

Figure 9.11: A counting loop to create a 24-hour clock menu

JComboBox timeMenu = new JComboBox();

int hour = 2400;
while ( hour >= 100 ) {

timeMenu.addItem( "" + hour );
hour = hour - 100;

}

Figure 9.12: A counting loop to create a reversed 24-hour clock menu
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Thus, if we want our 24-hour clock menu to appear with 2400 at the top and 100 at the bottom
we would use the loop shown in Figure 9.12.

While counting by 100s or 10s or even backwards is useful in many situations, the most common
form of counting loop is the loop that counts by 1s. In fact, Java includes a special shorthand for
writing an instruction that increments a counter variable by 1. If counter is a numeric variable,
then the statements

++counter;

and

counter++;

are both2 equivalent to the statement

counter = counter + 1;

Thus, we could replace the loop to fill our date menu with the loop

int date = 0;
while ( date < lengthOfMonth ) {

++date;
dateMenu.addItem( "" + date );

}

Similarly, the statements

--counter;

and

counter--;

decrease the value associated with a numeric variable by 1.

9.4 Nesting Instinct

In our generic template for a counting loop, one of the two parts of the loop body was described as
“Do a bit of interesting work using the counter.” More interesting variations of counting loops can
be formed by doing more interesting work. In particular, there is nothing that limits us to using
just a single Java statement to describe this work. We can use as many statements as we need and
we can use complex statements including if statements and even additional while loops.

To illustrate the use of a loop within a loop, consider making some additional travel arrange-
ments. While the airlines make the reasonable assumption that no one should specify their desired
flight time with more precision than the nearest hour, some car rental companies expect customers
to be even more precise. For example, the Budget Rent-A-Car reservation web site includes a menu
with times at 15 minute intervals. A small fragment of this menu is shown in Figure 9.13

2There is no difference between ++counter and counter++ when they are used as statements. Java, however,
allows a programmer to use these constructs as expressions. Using these constructs as expressions can produce code
that is difficult to understand. We urge you to avoid such use. When these constructs are used as expressions, they
both increment counter and produce a value. The expression ++counter produces the value associated with counter
after the increment is performed. The expression counter++ produces the value associated with counter before the
increment.
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Figure 9.13: A section of the Budget Rent-A-Car pickup time menu

JComboBox timeMenu = new JComboBox();

int hour = 100;
while ( hour <= 2400) {

Do a bit of interesting work using the counter.

hour = hour + 100;
}

Figure 9.14: An incomplete counting loop to create a clock menu

At first, it might seem easy to adapt the code shown in Figure 9.11 to build such a menu. That
code counted by 100s. What if we just changed it to count by 15s?

Unfortunately, the computer has no way to know that the value stored in the variable hour is
supposed to represent a time of day. It only knows that it is a number. If the value of hour starts
at 100 and we repeatedly add 15, the values placed in the menu will be 100, 115, 130, 145, 160,
175, 190, 205, etc. The computer has no way to know that it should skip from 145 to 200!

To see a way to fix this, suppose that we replace the line in Figure 9.11 that adds items to
the menu with our generic “Do a bit of interesting work using the counter.” The resulting code is
shown in Figure 9.14. Now, think about what sort of “interesting work” we need to perform if we
want to produce a menu like that shown in Figure 9.13. Each time we perform this “interesting
work” we should include four menu items for 0, 15, 30, and 45 minutes past the value in hour.
This itself is a repetitive task. It can be performed by a counting loop that counts the number of
minutes past the hour starting at 0 in steps of 15. A loop to do this might look like

int minutes = 0;
while ( minutes <= 45 ) {

Do a bit of interesting work using the minute counter.

minutes = minutes + 15;
}

Putting this fragment together with the template shown in Figure 9.14 gives us complete code
to fill a menu similar to the Budget Rent-A-Car time menu. This code is shown in Figure 9.15.
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JComboBox timeMenu = new JComboBox();

int hour = 100;
while ( hour <= 2400) {

// Add four menu items in 15 minute increments

int minutes = 0;
while ( minutes <= 45 ) {

timeMenu.addItem( "" + ( hour + minutes ) );
minutes = minutes + 15;

}

hour = hour + 100;
}

Figure 9.15: Nested loops to create a 15-minute increment time menu

This code is an example of what is called loop nesting. The counting loop that increments minutes
is referred to as the inner loop and the loop that increments hours is called the outer loop.

To reinforce the fact that we can use whatever statements are appropriate to do the “interesting
work” in a while loop, let us consider one final variation of our time menu. For people who cannot
figure out that 1800 hours is dinner time, we will write code to produce a menu with each time
followed by the appropriate “AM” or “PM” suffix.

We will begin with a counting loop that simply counts hours in increments of one. That is, our
basic template for this loop is

int hours = 1;
while ( hours <= 24 ) {

Do a bit of interesting work using the hour counter.

++hours;
}

This time we have to do two bits of “interesting work” for each execution of the loop.
We have to use the value of hour to determine what number to display in the menu. When

hour is 6, we should just display 6, but when hour is 16 we want to display 4. We can do this using
a simple if statement. For example, we might say

int timeToDisplay = hour;
if ( timeToDisplay > 12 ) {

timeToDisplay = timeToDisplay - 12;
}

We also have to decide whether to use the suffix “AM” or “PM”. This is a bit trickier because
midnight (i.e., 2400 hours) is considered “AM” while noon (i.e., 1200 hours) is considered “PM”.
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JComboBox timeMenu = new JComboBox();

int hour = 1;
while ( hour <= 24) {

// Translate 24-hour time into 12 hour time

int timeToDisplay = hour;
if ( timeToDisplay > 12 ) {

timeToDisplay = timeToDisplay - 12;
}

// determine the correct suffix and add to menu

if ( 12 <= hour && hour < 24 ) {
timeMenu.addItem( timeToDisplay + "PM" );

} else {
timeMenu.addItem( timeToDisplay + "AM" );

}

++hour;
}

Figure 9.16: Nesting if statement in a loop to form a time menu

All the times from noon until just before midnight are considered “PM”. Everything else is “AM”.
Therefore, the if statement

if ( 12 <= hour && hour < 24 ) {
timeMenu.addItem( timeToDisplay + "PM" );

} else {
timeMenu.addItem( timeToDisplay + "AM" );

}

will insert menu items with the appropriate suffixes. Putting these two if statements together
with the loop template shown above gives us a complete loop to form the desired menu as shown
in Figure 9.16.

9.5 Line by Line

Text documents, whether they be email messages, word processing documents, simple web pages,
or the text of a Java program, have at least one level of structure that is quite repetitive. They
are composed of a series of lines. This structure leads very naturally to loops that process the
information in such documents by repeatedly performing one or more instructions to process each
line. If the text to be processed is being received through a NetConnection, such loops will
repeatedly invoke the nextLine method. Such loops are called read loops or input loops. We will
consider the structure of read loops in this section. Later, you will see that read loops can also be
used to process the lines of text stored in files on a machine’s local disk.
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To illustrate a very simple application of a read loop, we will revise one version of the SMTP
client we explored in Chapter 4. Recall that when using the SMTP protocol, a client is expected
to send a sequence of commands or requests starting with prefixes like “HELO”, “MAIL FROM”,
“RCPT TO”, etc. In response to each of these commands, the server sends a line indicating whether
it was able to process the request successfully. These lines start with numeric codes like “250”,
which indicates success, and “501”, which indicates an error in the request sent by the client.

The clients we constructed in Chapter 4 all displayed the responses received from the server
in a JTextArea so that the user could verify that everything worked. We took several different
approaches to accomplish this. In one version, we used the nextLine method to retrieve the server’s
response immediately after each client request. In another, we used the dataAvailable method to
handle all server responses. In a third approach, we showed a version of the client that first sent
all its requests to the server and then afterwards processed all of the server’s responses together.
We will use this third version as our starting point for the introduction of read loops. For your
convenience, the buttonClicked method from this version is reproduced in Figure 9.17.

At this point, you know enough about loops that it should be obvious that we could use a while
loop to replace the sequence of seven invocations of log.append and connection.in.nextLine
that occur near the end of the method in Figure 9.17. A simple loop that counted from 1 to 7 and
contained one copy of the line that invokes nextLine would do the trick. You certainly could write
such a loop (and you probably should for practice). Java, however, provides an alternative to using
a counting loop that is preferable in this situation.

There is a method named hasNextLine associated with the in stream of every NetConnection
that can be used to determine how often to execute a read loop without counting lines. This
method returns a boolean value. It returns true if a line has been received from the server and
not yet retrieved by invoking nextLine. It returns false if the server has closed its side of the
NetConnection and all the lines sent have been processed. Otherwise, it makes the program wait
to see whether the server sends another line or closes the connection and then returns true or
false as appropriate.

Using the hasNextLine method, we can replace the seven lines that invoke nextLine near the
end of the code in Figure 9.17 with the shorter loop:

while ( connection.in.hasNextLine() ) {
log.append( connection.in.nextLine() + "\n" );

}

Even though this loop is very short, it is worth thinking carefully about how it works. In our
introduction to loops, we stressed that it is boring to do exactly the same thing over and over again.
With counting loops, we avoided exact repetition by making the action performed by the loop body
depend on a counter variable whose value changed each time the body was executed. The loop
body in our short read loop does not contain any assignment statement. Its execution does not
change the value of any variable. It does however, change the state of the NetConnection to the
server. It is important to understand that each time nextLine is invoked, the system attempts to
return a line that has not previously been accessed. Therefore, every time nextLine is invoked, it
does something slightly different by definition.

Of course, read loops do not have to be as simple as this first example. Just as we can place
many statements including nested loops and if statements within a counting loop, we can design
read loops with more complex bodies if appropriate. For example, given that most of the messages
sent by an SMTP server are fairly incomprehensible, we might decide to alter our program so that
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// Send a message when the button is clicked

public void buttonClicked( ) {
// Establish a NetConnection and say hello to the server

NetConnection connection = new NetConnection( SMTP_SERVER, SMTP_PORT );
connection.out.println( "HELO " + this.getHostName() );

// Send the TO and FROM addresses

connection.out.println( "MAIL FROM: <" + from.getText() +">" );
connection.out.println( "RCPT TO: <" + to.getText() +">" );

// Send the message body

connection.out.println( "DATA" );
connection.out.println( message.getText() );
connection.out.println( "." );

// Terminate the SMTP session

connection.out.println( "QUIT" );

// Display the responses from the server

log.append( connection.in.nextLine() + "\n" );
log.append( connection.in.nextLine() + "\n" );
log.append( connection.in.nextLine() + "\n" );
log.append( connection.in.nextLine() + "\n" );
log.append( connection.in.nextLine() + "\n" );
log.append( connection.in.nextLine() + "\n" );
log.append( connection.in.nextLine() + "\n" );

connection.close();
}

Figure 9.17: The buttonClicked method of a simple SMTP client
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while ( connection.in.hasNextLine() ) {
String response = connection.in.nextLine();
if ( response.startsWith( "4" ) || response.startsWith( "5" ) ) {

log.append( response + "\n" );
}

}

Figure 9.18: A read loop for displaying SMTP error messages

it only shows the user lines that indicate an error has occurred. The codes that SMTP servers place
at the beginning of each response are organized so that responses that indicate errors begin with a
“4” or “5”. Therefore, we can include an if statement in our read loop to selectively display only
errors as shown in Figure 9.18.

In the original loop, we never associated a name with any of the lines received from the server.
In the version shown in Figure 9.18, on the other hand, each line received is associated with the
name response during the execution of the loop body that processes that line. This is essential.
To emphasize this, consider the following code which will not work correctly because it invokes
nextLine several times within the loop’s body rather than associating a name with the result of a
single invocation of nextLine.

// This is an example of INCORRECT CODE!!!

if ( connection.in.nextLine().startsWith( "4" ) ||
connection.in.nextLine().startsWith( "5" ) ) {
log.append( connection.in.nextLine() + "\n" );

}

Suppose that we replaced the body of the loop in Figure 9.18 with this if statement and then
deliberately made a mistake when executing the program by entering “baduser@funnyplace.giv” as
the sender address for our message. In this case, the sequence of responses sent by the server will
look something like

220 smptserver.cs.williams.edu ESMTP Wed, 11 Jul 2007 11:07:04 -0400 (EDT)
250 smptserver.cs.williams.edu Hello 141.154.147.159, pleased to meet you
553 5.1.8 <baduser@funnyplace.giv> Domain of address baduser@funnyplace.giv does not exist
503 5.0.0 Need MAIL before RCPT
503 5.0.0 Need MAIL command
500 5.5.1 Command unrecognized: "This should not work at all"
500 5.5.1 Command unrecognized: "."
221 2.0.0 smptserver.cs.williams.edu closing connection

The correct version of the loop would display all but the first two and the last of these lines. Let
us consider how the incorrect version would work.

When the loop body was first executed, it would retrieve the line

220 smptserver.cs.williams.edu ESMTP Wed, 11 Jul 2007 11:07:04 -0400 (EDT)

from the server and check to see if it started with “4”. Since it does not start with “4” it would
then evaluate

connection.in.nextLine().startsWith( "5" )
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to see if it starts with “5”. This condition, however, invokes nextLine again. Because each
invocation of nextLine attempts to retrieve a new line from the NetConnection, rather than
testing to see if the first line started with “5” it would actually check whether the second line
received from the server:

250 smptserver.cs.williams.edu Hello 141.154.147.159, pleased to meet you

starts with “5”. It does not, so the first execution of the loop body would terminate without
displaying any line.

The second execution of the body would start by checking to see if the third line received

553 5.1.8 <baduser@funnyplace.giv> Domain of address baduser@funnyplace.giv does not exist

starts with “4”. It does not, so the computer would continue checking the condition of the loop
looking at the fourth line

503 5.0.0 Need MAIL before RCPT

to see if it starts with a “5”. This condition will return true. Therefore the statement

log.append( connection.in.nextLine() + "\n" );

will be executed to display the line. Unfortunately, since this command also invokes nextLine it
will not display the fourth line. Instead, it will access and display the fifth line

503 5.0.0 Need MAIL command

Luckily, this line is at least an error.
A very similar scenario will play out with even worse results on the next three lines. The

statement in the loop body will test to see if the sixth line

500 5.5.1 Command unrecognized: "This should not work at all"

starts with a “4”. Since it does not, it will continue to check if the seventh line

500 5.5.1 Command unrecognized: "."

starts with a “5”. Since this test returns true it will then display the eight line

221 2.0.0 smptserver.cs.williams.edu closing connection

which is not even an error message from the server!
The basic lesson is that a read loop should almost always execute exactly one command that

invokes nextLine during each execution of the loop body.

9.5.1 Sentinels

The hasNextLine method is not the only way to determine when a read loop should stop. In fact,
in many situations it is not sufficient. The hasNextLine method does not return false until the
server has closed its end of the connection. In many applications a client program needs to process a
series of lines sent by the server and then continue to interact with the server by sending additional
requests and receiving additional lines in response. Since the server cannot close the connection
if it expects to process additional requests, protocols have to be designed to provide some other
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way for a client to determine when to stop retrieving the lines sent in response to a single request.
To illustrate how this is done, we will present components of a client based on one of the major
protocols used to access email within the Internet, IMAP.

IMAP and SMTP share certain similar features. They are both text based protocols. In both
protocols, most interactions consist of the client sending a line describing a request and the server
sending one or more lines in response. IMAP, however, is more complex than SMTP. There are
many more commands and options in IMAP than in SMTP. Luckily, we only need to consider a
small subset of these commands in our examples:

LOGIN
After connecting to a server, an IMAP client logs in by sending a command with the request
code “LOGIN” followed by a user name and password.

SELECT
IMAP organizes the messages it holds for a user into named folders or mailboxes. Before
messages can be retrieved, the client must send a command to select one of these mailboxes.
All users have a default mailbox named “inbox” used to hold newly arrived messages. A
command of the form “SELECT inbox” can be used to select this mailbox.

FETCH
Once a mailbox has been selected, the client can retrieve a message by sending a fetch request
including the number of the desired message and a code indicating which components of the
message are desired.

LOGOUT
When a client wishes to disconnect from the server, it should first send a logout request.

Each request sent by an IMAP client must begin with a request identifier that is distinct from
the identifiers used in all other requests sent by that client. Most clients form request identifiers by
appending a sequence number to some prefix like “c” for “client”. That is, client commands will
typically start with a sequence of identifiers like “c1”, “c2”, “c3”, etc.

Every response the server sends to the client also starts with a prefix. In many cases, this
prefix is just a single “*”. Such responses are called untagged responses. Other server responses are
prefixed with the request identifier used as a prefix by the client in the request that triggered the
response. Such responses are called tagged responses.

An example should make all of this fairly clear. Figure 9.19 shows the contents of an exchange
in which a client connects to an IMAP server and fetches a single message from the user’s inbox
folder. To make the requests sent by the client stand out, we have drawn rectangles around each
of them and displayed the text of these requests in bold-face italic font.3

The session begins with the client establishing a connection to port 143 on the IMAP server. As
soon as such a connection is established, the server sends the untagged response “* OK [CAPABILITY
...” to the client.

Next, the client sends a LOGIN request and the server responds with a tagged request which,
among other things, tells the client that the user identifier and password were accepted. The client
request and the server’s response to the login request are both tagged with “c1”, a prefix chosen
by the client.

3The contents of the session have also been edited very slightly to make things fit a bit better on the page and to
hide the author’s actual password.
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* OK [CAPABILITY IMAP4REV1 STARTTLS AUTH=LOGIN] 2004.357 at Wed, 11 Jul 2007 15:53:00 -0400 (EDT)
c1 LOGIN tom somethingSecret

c1 OK [CAPABILITY IMAP4REV1 NAMESPACE UNSELECT SCAN SORT MULTIAPPEND] User tom authenticated
c2 SELECT inbox
* 549 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 1184181410] UID validity status
* OK [UIDNEXT 112772] Predicted next UID
* FLAGS (Forwarded Junk NotJunk Redirected $Forwarded \Answered \Flagged \Deleted \Draft \Seen)
c2 OK [READ-WRITE] SELECT completed

c3 FETCH 81 (BODY[])

* 81 FETCH (BODY[] {532}
Return-Path: <sales@lacie.com>
Received: from mail.inherent.com (lacie1.inherent.com [207.173.32.81])

by ivanova.inherent.com (8.10.1/8.10.1) with ESMTP id g0OGhZh12957
for <tom@cs.williams.edu>; Thu, 24 Jan 2007 08:43:35 -0800

Message-Id: <200201241643.g0OGhZh12957@ivanova.inherent.com>
Content-type: text/plain
Date: Thu, 24 Jan 2007 08:42:46 -0800
From: sales@lacie.com
Subject: Thanks for shopping LaCie
To: tom@cs.williams.edu

Your order has been received and will be processed.
Thanks for shopping LaCie.

)
c3 OK FETCH completed

c4 LOGOUT
* BYE bull IMAP4rev1 server terminating connection
c4 OK LOGOUT completed

Figure 9.19: A short IMAP client/server interaction
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Figure 9.20: Interface for an ugly (but simple) IMAP client

The client then sends a SELECT request to select the standard inbox folder. The server has a bit
more to say about this request. It sends back a series of untagged responses providing information
including the number of messages in the folder, 549, and the number of new messages, 0. Finally,
after five such untagged responses, it sends a response tagged with the prefix “c2” to tell the client
that the SELECT request has been completed successfully.

The client’s third request is a FETCH for message number 81. The server responds to this
request with two responses. The first is an untagged response that is interesting because it spans
multiple lines. It starts with “* 81 FETCH (BODY[] {532}”, includes the entire contents of the
requested email message and ends with a line containing a single closing parenthesis. It is followed
by a tagged response that indicates that the fetch was completed.

Finally, the client sends a LOGOUT request. Again the server responds with both an untagged
and a tagged response.

The aspects of this protocol that are interesting here are that the lengths of the server responses
vary considerably and that the server does not indicate the end of a response by closing the con-
nection. You may have noticed, however, that the server does end each sequence of responses with
a response that is fairly easy to identify. The last line sent in response to each of the client requests
is a tagged response starting with the identifier the client used as a prefix in its request. Such a
distinguished element that indicates the end of a sequence of related input is called a sentinel.

To illustrate how to use a sentinel, suppose we want to write an IMAP client with a very
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primitive interface. This client will simply provide the user with the ability to enter account
information and a message number. After this is done, the user can press a “Get Message” button
and the program will attempt to fetch the requested message by sending requests similar to those
seen in Figure 9.19. As it does this, the client will display all of the lines exchanged with the server.
A nicer client would only display the message requested, but this interface will enable us to keep
our loops a bit simpler. An image of how this interface might look is shown in Figure 9.20.

We will assume that the program includes declarations for the following four variables:

int requestCount;
To keep track of the number of requests that have been sent to the server.

String requestID;
To refer to the request identifier placed as a prefix on the last request sent to the server.

JTextArea display;
To refer to the JTextArea in which the dialog with the server is displayed.

NetConnection toServer;
To refer to the connection with the server.

Let us consider the client code required to send the “SELECT” request to the server and
display the responses received. Sending this command is quite simple since it does not depend on
the account information or message number the user entered. Processing the responses, on the
other hand, is interesting because the number of responses the server sends may vary. For example,
if you compare the text in Figure 9.19 to that displayed in the window shown in Figure 9.20 you
will notice that if a new message has arrived, the server may add a response to tell the client about
it.

The code to send the select request might look like this:

++requestCount;
requestID = "c" + requestCount;

toServer.out.println( requestID + " SELECT inbox" );
display.append( requestID + " SELECT inbox" + "\n" );

The first two lines determine the request identifier that will be included as a prefix. The next line
sends the request through the NetConnection. The final line adds it to the text area.

After sending this request, the client should retrieve all the lines sent by the server until the
first line tagged with the prefix the client included in the select request. This prefix is associated
with the variable requestID. Since the number of requests can vary, we should clearly use a read
loop. One might expect the loop to look something like

// Warning:
//
// This loop will not work!!

//
while ( ! responseLine.startsWith( requestID ) ) {

responseLine = toServer.in.nextLine();
display.append( responseLine + "\n" );

}
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Unfortunately, this will not work. The variable responseLine is assigned its first value when
the loop’s body is first executed. The condition in the loop header, however, will be executed
before every execution of the loop body, including the first. That means the condition will be
evaluated before any value has been associated with responseLine. Since the condition involves
responseLine, this will lead to a program error.

You might have heard the expression “prime the pump.” It refers to the process of pouring
a little liquid into a pump before using it to replace any air in the pipes with water so that the
pump can function. Similarly, to enable our loop to test for the sentinel the first time, we must
“prime” the loop by reading the first line of input before the loop. This means that the first time
the loop body is executed, the line of input it should process (i.e., add to display) will already be
associated with responseLine. To make the loop work, we need to design the loop body so that
this is true for all executions of the loop. We do this by writing a loop body that first processes
one line and then retrieves the next line so that it can be processed by the next execution of the
loop body. The resulting loop looks like

String responseLine = toServer.in.nextLine()";
while ( ! responseLine.startsWith( requestID ) ) {

display.append( responseLine + "\n" );
responseLine = toServer.in.nextLine();

}

The original loop performed two basic steps: retrieving a line from the server and displaying the
line on the screen. We prime the loop by performing one of these steps before its first execution.
As a result, we also need to finish the loop’s work by performing the other step once after the loop
completes. To appreciate this, consider what will happen to the last line processed. This line will
start with the sentinel value. It will be retrieved by the last execution of the second line in the loop
body

responseLine = toServer.in.nextLine();

The computer will then test the condition in the loop header and conclude that the loop should not
be executed again. As a result, the instruction inside the loop that appends lines to the display
will never be executed for the sentinel line. If we want the sentinel line displayed, we must add a
separate command to do this after the loop. Following this observation, complete code for sending
the select request and displaying the response received is shown in Figure 9.21.

9.6 Accumulating Loops

The code shown in Figure 9.21 includes everything needed to process a select request. To complete
our IMAP client, however, we also need code to handle the login, fetch and logout requests. The
code to handle these requests would be quite similar to that for the select request. We should exploit
these similarities. Rather than simply writing code to handle each type of request separately, we
should write a private helper method to perform the common steps.

In particular, we could write a method named getServerResponses that would retrieve all of
the responses sent by the server up to and including the tagged response indicating the completion
of the client’s request, and return all of these responses together as a single String. This method
would take the NetConnection and the request identifier as parameters. Given such a method, we
could rewrite the code for a select request as
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++requestCount;
requestID = "c" + requestCount;

toServer.out.println( requestID + " SELECT inbox" );
display.append( requestID + " SELECT inbox" + "\n" );

display.append( getServerResponses( toServer, requestID ) );

Preliminary code for a getServerResponses method is shown in Figure 9.22. The method
includes a loop very similar to the one we included in Figure 9.21. This loop, however, does not
put the lines it retrieves into a JTextArea. Instead, it combines them to form a single String. A
variable named allResponses refers to this String.

The variable allResponses behaves somewhat like the counters we have seen in earlier loops. It
is associated with the empty string as an initial value before the loop just as an int counter variable
might be initialized to zero. Then, in the loop body we “add” to its contents by concatenating the
latest line received to allResponses. We are, however, doing something more than counting. We
are accumulating the information that will serve as the result of executing the loop. As a result,
such variables are called accumulators.

Of course, we can accumulate things other than Strings. To illustrate this, we will use an
accumulator to fix a weakness in the approach we have taken to implementing our IMAP client.

Suppose that we use our IMAP client to retrieve an email message about the Star Wars movies
including the following text (adapted from the IMDB web site):

A New Hope opens with a rebel ship being boarded by the tyrannical
Darth Vader. The plot then follows the life of a simple farmboy, Luke
Skywalker, as he and his newly met allies (Han Solo, Chewbacca, Ben Kenobi,
c3-po, r2-d2) attempt to rescue a rebel leader, Princess Leia, from the
clutches of the Empire. The conclusion is culminated as the Rebels,
including Skywalker and flying ace Wedge Antilles make an attack on the
Empires most powerful and ominous weapon, the Death Star.

Can you see why retrieving this particular message might cause a problem?
The IMAP client we have written uses the sequence “c1”, “c2”, “c3”, etc. as its request

identifiers. The request identifier used in the request to fetch the message will always be “c3”.
The fourth line of the text shown above starts with the characters “c3” as part of the robot name
“c3-po”. As a result, the loop in getServerResponses will terminate when it sees this line, failing
to retrieve the rest of the message and several other lines sent by the server. An error like this
might seem unlikely to occur in practice, but the designers of IMAP were concerned enough to
include a mechanism to avert the problem in the rules of the protocol.

If you examine the first line of the untagged response to the fetch request shown in Figure 9.19:

* 81 FETCH (BODY[] {532}
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// Determine the request identifier

++requestCount;
requestID = "c" + requestCount;

// Send and display the request

toServer.out.println( requestID + " SELECT inbox" );
display.append( requestID + " SELECT inbox" + "\n" );

// Prime the loop by retrieving the first response

String responseLine = toServer.in.nextLine();

// Retrieve responses until the sentinel is received

while ( ! responseLine.startsWith( requestID ) ) {
display.append( responseLine + "\n" );
responseLine = toServer.in.nextLine();

}

// Display the final response

display.append( responseLine + "\n" );

Figure 9.21: Client code to process an IMAP “SELECT inbox” request

// Retrieve all responses the server sends for a single request

public String getServerResponses( NetConnection toServer, String requestID ) {
String allResponses = "";

String responseLine = toServer.in.nextLine();
while ( ! responseLine.startsWith( requestID ) ) {

allResponses = allResponses + responseLine + "\n";
responseLine = toServer.in.nextLine();

}
allResponses = allResponses + responseLine + "\n";

return allResponses;
}

Figure 9.22: A method to collect an IMAP server’s responses to a single client request
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you will notice that it ends with the number 532 in curly braces. This number is the total length
of the text of the email message that follows. According to the rules of IMAP, when a server wants
to send a response that spans multiple lines, the first line must end with a count of the total size of
the following lines. When the client receives such a response, it retrieves lines without checking for
the sentinel value until the total number of characters retrieved equals the number found between
the curly braces. In the IMAP protocol description, such collections of text are called literals. The
only trick is that the count includes not just the characters you can see, but additional symbols
that are sent through the network to indicate where line breaks occur. There are two such invisible
symbols for each line break known as the “return” and “new line” symbols. Both must be included
at the end of each line sent through the network.

Figure 9.23 shows a revised version of the getServerResponses method designed to handle
IMAP literals correctly. At first, it looks very different from the preceding version of the method,
but its basic structure is the same. The body of the while loop in the original version of the
method contained just two instructions:

allResponses = allResponses + responseLine + "\n";
responseLine = toServer.in.nextLine();

The new version retains these two instructions as the first and last instructions in the main loop.
However, it also inserts one extra instruction — a large if statement designed to handle literals —
between them. The condition of the if statement checks for literals by seeing if the first line of a
server response ends with a “}”. If no literals are sent by the server, the body of this if statement
is skipped and the loop works just like the earlier version.

If the condition in the if statement is true then the body of the if statement is executed to
process the literal. The if statement contains a nested while loop. With each iteration of this
loop, a new line sent by the server is processed. Two types of information about each line are
accumulated. The line

allResponses = allResponses + responseLine + "\n";

which is identical to the first line of the outer loops, continues the process of accumulating the
entire text of the server’s response in the variable allResponses. The line

charsCollected = charsCollected + responseLine.length() + LINE_END;

accumulates the total length of all of the lines of the literal that have been processed so far in the
variable charsCollected. The value NEW LINE accounts for the two invisible characters transmitted
to indicate the end of each line sent. charsCollected is initialized to 0 before the loop to reflect
the fact that initially no characters in the literal have been processed.

The instructions that precede the inner loop extract the server’s count of the number of charac-
ters it expects to send from the curly braces at the end of the first line of the response. The header
of the inner loop uses this information to determine when the loop should stop. At each iteration,
this condition compares the value of charsCollected to the server’s prediction and stops when
they become equal.

9.7 String Processing Loops

Strings frequently have repetitive structures. Inherently, every string is a sequence of characters.
Some strings can be interpreted as sequences of words or larger units like sentences. When we need
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// Retrieve all responses the server sends for a single request

public String getServerResponses( NetConnection toServer, String requestID ) {
// Number of invisible symbols present between each pair of lines

final int LINE_END = 2;

String allResponses = "";
String responseLine = toServer.in.nextLine();

while ( ! responseLine.startsWith( requestID ) ) {

allResponses = allResponses + responseLine + "\n";

// Check for responses containing literal text

if ( responseLine.endsWith( "}" ) ) {

// Extract predicted length of literal text from first line of response

int lengthStart = responseLine.lastIndexOf( "{" ) + 1;
int lengthEnd = responseLine.length() - 1;
String length = responseLine.substring( lengthStart, lengthEnd );
int promisedLength = Integer.parseInt( length );

// Used to count characters of literal as they are retrieved

int charsCollected = 0;

// Add lines to response until their length equals server’s prediction

while ( charsCollected < promisedLength ) {
responseLine = toServer.in.nextLine();
allResponses = allResponses + responseLine + "\n";
charsCollected = charsCollected + responseLine.length() + LINE_END;

}

}

// Get the next line following a single line response or a literal

responseLine = toServer.in.nextLine();
}

return allResponses + responseLine + "\n";
}

Figure 9.23: A method to correctly retrieve responses including literals
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to process a String in a way that involves such repetitive structure, it is common to use loops. In
this section, we introduce some basic techniques for writing such loops.

Our first example involves a public confession. For years, I pestered my youngest daughter about
a punctuation “mistake” she made when typing. The issue involved the spacing after periods. In
the olden days, when college-bound students left home with a typewriter rather than a laptop, they
(we?) were taught to place two spaces after the period at the end of a sentence. In the world of
typewriters in which all characters had the same width, this rule apparently improved readability.
Once word processors and computers capable of using variable-width fonts arrived, this rule became
unnecessary and students were told to place just one space after each sentence. Unfortunately, no
one told me that the rule had changed. I was trying to teach my daughter the wrong rule!

To make up for my mistake, let’s think about how we could write Java code to take a String
typed the old way and bring it into the present by replacing all the double spaces after periods with
single spaces. In particular, we will define a method named reduceSpaces that takes a String
in which some or all periods may be followed by double spaces and returns a String in which
any sequence of more than one space after a period has been replaced by a single space. Even if
you have always typed the correct number of spaces after your periods, this example illustrates
techniques that can be used to revise the contents of a String in many other useful ways.

A good way to start writing a loop that repeats some process is to write the code to perform
the process once. Generally speaking, if you do not know how to do something just once, you are
not going to be able to do it over and over again. In our case, “the process” is finding a period
followed by two spaces somewhere in a String and replacing the two spaces with a single space.

As our English description suggests, the first step is to find a period followed by two spaces. This
can be done using the indexOf method. Assuming that the String to be processed is associated
with a variable named text, then the statement

int periodPosition = text.indexOf( ". " );

associates name periodPosition with the position of the first period within text that is followed
by two spaces. Since it is probably a bit difficult to count the spaces between the quotes in this
code, in the remainder of our presentation, we will use the equivalent expression

"." + " " + " "

in place of ". ".
Once indexOf tells us where the first space that should be eliminated is located, we can use

the substring method to break the String into two parts: the characters that appear before the
extra space and the characters that appear after that space as follows

int periodPosition = text.indexOf( "." + " " + " " );
String before = text.substring( 0, periodPosition + 2 );
String after = text.substring( periodPosition + 3 );

Then, we can associate the name text with the String obtained by removing the second space by
executing the assignment

text = before + after;

With this code to remove a single extra space, we can easily construct a loop and a method
to remove all of the extra spaces. A version of reduceSpaces based on this code is shown in

250



private String reduceSpaces( String text ) {

while ( text.contains( "." + " " + " " ) ) {
int periodPosition = text.indexOf( "." + " " + " " );
String before = text.substring( 0, periodPosition + 2 );
String after = text.substring( periodPosition + 3 );
text = before + after;

}
return text;

}

Figure 9.24: A method to compress double spaces after periods

Figure 9.24. We have simply placed the instructions to remove one double space in a loop whose
condition states that those instructions should be executed repeatedly as long as text still contains
at least one double space after a period.

Suppose instead that we were given text in which each sentence was ended with a period followed
by a single space and we wanted to convert this text into “typewriter” format where every period
was followed by two spaces. Again, we start by writing instructions to add an extra space after
just one of the periods in the text. The following instructions do the job by splitting the text into
“before” and “after” components right after the first period:

int periodPosition = text.indexOf( "." + " " );
String before = text.substring( 0, periodPosition + 1 );
String after = text.substring( periodPosition + 1 );
text = before + " " + after;

However, if we put these instruction inside a loop with the header

while ( text.contains( "." + " " ) ) {

the resulting code won’t add extra spaces after all of the periods. Instead, it will repeatedly add
extra spaces after the first period over and over again forever.

To understand why this loop won’t work, note that even after we replace a copy of the substring
"." + " " in text with the longer sequence "." + " " + " " , text still contains a copy of "." +
" " at exactly the spot where the replacement was made. This interferes with the correct operation
of the proposed code in two ways. First, if the condition in the loop header is true before we execute
the body of the loop, it will still be true afterwards. This means that the loop will never stop.
If you run such a program, your computer will appear to lock up. This is an example of what is
called an infinite loop. Luckily, most program development environments provide a convenient way
to terminate a program that is stuck in such a loop.

In addition, each time the loop body is executed the invocation of indexOf in the first line will
find the same period. The first time, there will only be one space after this period. The second time
there will be two spaces, then three and so on. Not only does this loop execute without stopping,
as it executes, it only changes the number of spaces after the first period.

There are two ways to solve these problems. The first is to take advantage of the fact that
indexOf accepts a second, optional parameter telling it where to start its search. If we always start
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int periodPos = -1;
while ( text.indexOf( "." + " ", periodPos + 1 ) != -1 ) {

periodPos = text.indexOf( "." + " ", periodPos + 1 );
String before = text.substring( 0, periodPos + 1 );
String after = text.substring( periodPos + 1 );
text = before + " " + after;

}

Figure 9.25: An inefficient loop to add spaces after periods

the search after the last period we processed, each period will only be processed once. Also, recall
that indexOf returns -1 if it cannot find a copy of the search string. Therefore, if we replace the
use of the contains method with a test to see if an invocation of indexOf returned -1, our loop
will stop correctly after extra blanks are inserted after all of the periods. A correct (but inefficient)
way to do this is shown in Figure 9.25.

The body of this loop is identical to the preceding version, except that periodPos + 1 is
included as a second parameter to the invocation of indexOf. This ensures that each time the
computer looks for a period it starts after the position of the period processed the last time the
loop body was executed. To make this work correctly for the first iteration, we initially associate
-1 with the periodPos variable.

The other difference between this loop and the previous one is the condition. Instead of depend-
ing on contains, which always searches from the beginning of a String, we use an invocation of
indexOf that only searches after the last period processed. This version is correct but inefficient.
Having replaced contains with indexOf, the loop now invokes indexOf twice in a row with exactly
the same parameters producing exactly the same result each time the body is executed.

Efficiency is a tricky subject. Computers are very fast. In many cases, it really does not matter
if the code we write does not accomplish its purpose in the fewest possible steps. The computer
will do the steps so quickly no one will notice the difference anyway. When working with loops,
however, a few extra steps in each iteration can turn into thousands or millions of extra steps if
the loop body is repeated frequently. As a result, it is worth taking a little time to avoid using
indexOf to ask the computer to do exactly the same search twice each time this loop executes.

The way to make this loop more efficient is to “prime” the loop much as we primed read loops.
In this case, we prime the loop by performing the first indexOf before the loop and saving the
result in a variable. In addition, we will need to perform the indexOf needed to set this variable’s
value as the last step of each execution of the loop body in preparation for the next evaluation of
the loop’s condition. We can then safely test this variable in the loop condition. An addSpaces
method that uses this approach is shown in Figure 9.26.

If you think about it for a moment, you should realize that the same inefficiency we identified
in Figure 9.25 exists in the code shown for the reduceSpaces method in Figure 9.24. It is not
as obvious in the reduceSpaces method because we do not invoke indexOf twice in a row. The
invocations of contains and indexOf in this method, however, make the computer search through
the String twice in a row looking for the same substring. Worse yet, both searches start from the
very beginning of the text, rather than after the last period processed. As a result, it would be
more efficient to rewrite reduceSpaces in the style of Figure 9.26. We encourage the reader to
sketch out such a revision of the method.
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private String addSpaces( String text ) {

int periodPos = text.indexOf( "." + " " );
while ( periodPos >= 0 ) {

String before = text.substring( 0, periodPos + 1 );
String after = text.substring( periodPos + 1 );
text = before + " " + after;
periodPos = text.indexOf( "." + " ", periodPos + 1 );

}
return text;

}

Figure 9.26: A method to place double spaces after periods

An alternative approach to the problem of implementing addSpaces is to use a variable that
accumulates the result as we process periods. Suppose we call this variable processed and declare
it as

String processed = "";

The loop body will now function by moving segments of the original String from the variable text
to processed fixing the spacing after one period in each segment copied.

Again, let’s start by thinking about how to do this just once. In fact, to make things even
simpler, just think about doing it for the first period in the String. The code might look like

int periodPos = text.indexOf( "." + " " );
processed = text.substring( 0, periodPos + 2 ) + " ";
text = text.substring( periodPos + 2 );

We find the period, and then we move everything up to and including the period and following
spaces to processed while leaving everything after the space following the first period in text.

Now, all we need to do to make this work for periods in the middle of the text, rather than
just the first period, is to add the prefix from text to processed rather than simply assigning it
to processed. That is, we change the assignment

processed = text.substring( 0, periodPos + 2 ) + " ";

to be

processed = processed + text.substring( 0, periodPos + 2 ) + " ";

We still want to avoid searching the text in both the loop condition and the loop body. Therefore,
we prime the loop by searching for the first period and repeat the search as the last step of the loop
body. The complete loop is shown in Figure 9.27. Note that any suffix of the original text after
the last period will remain associated with the variable text after the loop terminates. Therefore,
we have to concatenate processed with text to determine the correct value to return.

The behavior of the values associated with text by this loop is in some sense the opposite
of that of the values of processed. In the case of processed, information is accumulated by
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private String addSpaces( String text ) {
String processed = "";

int periodPos = text.indexOf( "." + " " );
while ( periodPos >= 0 ) {

processed = processed + text.substring( 0, periodPos + 2 ) + " ";
text = text.substring( periodPos + 2 );
periodPos = text.indexOf( "." + " " );

}
return processed + text;

}

Figure 9.27: Another method to place double spaces after periods

gathering characters together. As the loop progresses, on the other hand, the contents of text are
gradually dissipated by throwing away characters. In fact, it is frequently useful to design loops
that gradually discard parts of a String as those parts are processed and terminate when nothing
of the original String remains.

As an example of this, consider how to add one useful feature to the SMTP client that was
introduced in Chapter 4 and discussed again in Section 9.5. That program allows a user to send an
email address to a single destination at a time. Most real email clients allow one to enter an entire
list of destination addresses when sending a message. These clients send a copy of the message to
each destination specified. Such clients allow the user to type in all of the destination addresses
on one line separated from one another by spaces or commas. An example of such an interface is
shown in Figure 9.28

The SMTP protocol supports multiple destinations for a message, but it expects each destination
to be specified as a separate line rather than accepting a list of multiple destinations in one line.
We have seen that an SMTP client typically transmits a single message by sending the sequence
of commands “HELO”, “MAIL FROM”, “RCPT TO”, “DATA”, and “QUIT” to the server. To
specify multiple destinations the client has to send multiple “RCPT TO” commands so that there
is one such command for each destinations address.

Our goal is to write a loop that will take a String containing a list of destinations and send
the appropriate sequence of “RCPT TO” commands to the server. To keep our code simple, we
assume that exactly one space appears between each pair of addresses.

Once again, start by thinking about the code we would use to send just one of the “RCPT TO”
commands to the server. Assuming that the variable destinations holds the complete String of
email addresses and that connection is the name of the NetConnection to the server, we could
use the instructions

int endOfAddress = destinations.indexOf( " " );
String destination = destinations.substring( 0, endOfAddress);
connection.out.println( "RCPT TO: <" + destination +">" );

The first of these instructions finds the space after the first email address. The second uses the
position of this space with the substring method to extract the first address from destinations.
The final line sends the appropriate command to the server.
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Figure 9.28: Typical interface for specifying multiple email destinations

We clearly cannot simply repeat these commands over and over to handle multiple destinations.
If we repeat just these instructions, the first line will always find the same space and the loop will
just send identical copies of the same “RCPT TO” command forever:

RCPT TO: <mworth@global.com>
RCPT TO: <mworth@global.com>
RCPT TO: <mworth@global.com>

. . .

We can get much closer to what we want by adding the following line to the end of the code we
have already written

destinations = destinations.substring( endOfAddress + 1 );

This line removes the address processed by the first three lines from the value of destinations.
Therefore, if we execute these four lines repeatedly, the program sends a “RCPT TO” for the
first address in destinations the first time, a command for the second address during the second
execution, and so on:

RCPT TO: <mworth@global.com>
RCPT TO: <glord@myschool.edu>

. . .

The last address, however, will be a problem. When all but one address has been removed from
destinations, there will be no spaces left in the String. As a result, indexOf will return -1 as the
value to be associated with endOfAddress. Invoking substring with -1 as a parameter will cause a
program error.
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// Warning: This code is correct, but a bit inelegant

while ( destinations.length() > 0 ) {
int endOfAddress = destinations.indexOf( " " );
if ( endOfAddress != -1 ) {

String destination = destinations.substring( 0, endOfAddress);
connection.out.println( "RCPT TO: <" + destination +">" );
destinations = destinations.substring( endOfAddress + 1 );

} else {
connection.out.println( "RCPT TO: <" + destinations +">" );
destinations = "";

}
}

Figure 9.29: An awkward loop to process multiple destinations

One way to address this problem is to place the statements that depend upon the value that
indexOf returns within a new if statement that first checks to see if the value returned was -1.
A sample of how this might be done is shown in Figure 9.29. The code in the first branch of this
if statement handles all but the last address in a list by extracting one address from the list using
the value returned by indexOf. The code in the second branch is only used for the last address in
the list. It simply treats the entire contents of destinations as a single address and then replaces
this one element list with the empty string.

While the code shown in Figure 9.29 will work, it should bother you a bit. The whole point
of a loop is to tell the computer to execute certain instructions repeatedly. Given the loop in
Figure 9.29, we know that the statements in the else part of the if statement will not be executed
repeatedly. The code is designed to ensure that these statements will only be executed once each
time control reaches the loop. What are instructions that are not supposed to be repeated doing in
a loop? This oddity is a clue that the code shown in Figure 9.29 probably is not the most elegant
way to solve this problem.

There is an alternate way to solve this problem that is so simple it will seem like cheating.
Accordingly, we want to give you a deep and meaningful explanation of the underlying idea before
we show you its simple details.

When dealing with text that can be thought of as a list, it is common to use some symbol
to indicate where one list element ends and the next begins. This is true outside of the world of
Java programs. In English, there are several punctuation marks used to separate list items. These
include commas, semi-colons, and periods. The preceding sentence show a nice example of how
commas are used in such lists. Also, this entire paragraph can be seen as a list of sentences where
each element of this list is separated from the next by a period.

There is, however, an important difference between commas and periods in English. The comma
is a separator. We place separators between the elements of a list. The period is a terminator.
We place one after each element in a list, including the last element. When a separator is used to
delimit list items, there is always one more list item than there are separators. When a terminator
is used the number of list items equals the number of terminators.

This simple difference can lead to awkwardness when we try to write Java code to process
text that contains a list in which separators are used as delimiters. The loop is likely to work by
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destinations = destinations + " ";
while ( destinations.length() > 0 ) {

int endOfAddress = destinations.indexOf( " " );
String destination = destinations.substring( 0, endOfAddress);

connection.out.println( "RCPT TO: <" + destination +">" );

destinations = destinations.substring( endOfAddress + 1 );
}

Figure 9.30: A simpler loop to process multiple email destination addresses

searching for the delimiter symbols. If a separator is being used, there will still be one item left
to process after the last separator has been found and removed. This is the difficulty the code
in Figure 9.29 was designed to handle. The spaces that separate the email addresses are used as
separators.

We can fix this by using spaces to terminate the email addresses rather than separate them. It
would be odd to make someone using our program type in an extra space after the last address, but
it is quite easy to write code to add such an extra space. Once such a space is added, we can treat
the spaces as terminators instead of separators. This make it unnecessary to treat the last address
as a special case. Figure 9.30 shows the complete code to handle a list of destination addresses
using this approach.

9.8 Summary

This chapter is different from the chapters that have preceded it in an important way. In each of
the earlier chapters, we introduced several new features of the Java language. In this chapter, we
only introduced one. Strangely, this chapter is not any shorter than the others. This reflects the
fact that while the technical details of the syntax and interpretation of a while loop in Java are
rather simple, learning to write loops effectively is not. Therefore, although we introduced all of the
rules of Java that govern while loops in Section 9.2, we filled several other sections with examples
designed to introduce you to important techniques and common patterns for constructing loops.

As we tried to stress in several of our examples, it is frequently helpful to write complete
code to perform a task once before seriously thinking about how a loop can be used to do it
repeatedly. Having concrete code at hand to perform an operation once can expose details you
have to understand in order to incorporate the code into a loop.

Technically, a loop only has two parts, its header and its body. In many of the loops we discussed,
however, it was possible to identify four parts. The first part is the statement or statements
preceding the loop that are designed to initialize the variables that are critical to the loops operation
or prepare other aspects of the computer’s state for the loop. For counting loops, this simply
involved initializing a numeric variable. For read loops, we saw that we sometimes prime a loop by
retrieving the first input from its source before the loop body.

The loop condition is the second component of all loops. It is crucial to ensure that repeatedly
executing the body of the loop eventually leads to a point where this condition is false. Otherwise,
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the result will be an infinite loop. It is also important to realize that the condition is tested just
before every execution of the loop body including the first. This is critical when deciding how to
initialize variables before the loop.

The loop body can often be divided into two subparts. One subset of the instructions in the loop
body can be identified as commands designed to do the actual work of the loop. The remaining
instructions are designed to alter program variables so that the next execution of the loop will
correctly move on to the next step required. Thus, almost all while loops can be abstracted to fit
the following template

// Initialize loop variables and other state

while ( // loop variable values indicate more work is left ) {
// Do some interesting work

// Update the loop variables

}

This template can also serve as a very useful guide when constructing loops.
Important patterns are also seen in the ways loop variables are manipulated. We have seen

examples of several of these including counter variables, accumulators, and String variables whose
values are gradually reduced to the empty string during loop processing.
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