
Chapter 11

Tables of Content

Collections of information can be structured in many ways. We sometimes organize information into
lists including to-do lists, guest lists, and best-seller lists. Tables, including multiplication tables
and periodic tables, have been used to organize information since long before we had spreadsheets
to help produce them. Occasionally we organize our relatives into family trees, our friends into
phone trees, and our employees into organizational charts (which are really just trees).

Given that there are many ways of organizing the contents of a collection, Java provides several
mechanisms for representing and manipulating collections. In Chapter 10, we saw how recursive
structures could be used to manage collections. In this chapter we will introduce another feature
of the Java language that supports collections of data, the array. In particular, we will see how
arrays can be used to organize collections of data as lists and tables.

To introduce the use of arrays in a context that is both important and familiar, we will begin
by focusing on just one application of arrays in this chapter. We will explore how arrays can be
used to manipulate the information that describes a digital image. Even relatively small digital
images are composed of thousands of dots of color known as pixels. We will see that arrays provide
a very natural way to manipulate the collection of information that describes an image’s pixels.
We will learn how we can transform images by manipulating the arrays that describe them. We
will explore array algorithms to perform operations like scaling and rotation of images.

11.1 A Picture is Worth 754 Words

When an image is represented within a computer, the colors of the parts of the image are represented
numerically. This is accomplished by dividing the picture into a grid of tiny squares called pixels
and then using numbers to describe the color of each pixel. There are many schemes that can be
used to represent colors numerically. These schemes typically use several numbers to describe each
color but differ in how they interpret these numbers. In one scheme, known as RGB, the numbers
describe the amount of red, green, and blue light that should be mixed to produce a pixel’s color.
In another called HSB, three numbers are used to describe qualities of the color referred to as its
hue, saturation and brightness. Of course, there is nothing magic about the number three. There
is at least one system for describing colors that uses four values. This scheme is known as CYMK.

Things are a bit simpler for images containing only shades of gray like the photo in Figure 11.1.
Being lovers of simplicity, we will initially limit our attention to such grayscale images.

In a grayscale image, a single number can be used to describe the brightness of each pixel. Small
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Figure 11.1: Asa Gray (1810-1888), Fisher Professor of Natural History, Harvard University

numbers are typically used to describe dark pixels and large number are used to describe brighter
pixels. Different schemes use different ranges of values for the darkest and brightest pixels. A very
common approach is to limit the range of values so that each pixel’s description fits in a single 8-bit
unit of computer memory. In this case, a black pixel is encoded using 0 and the largest number
that can be encoded in 8 bits, 255, is used to describe white pixels. Various shades of gray are
associated with the values between 0 and 255. A dark gray pixel might have a brightness value of
80 and a light gray pixel’s brightness might be 200.

The number of pixels per inch affects the quality of the image’s representation. If the number is
too small, the individual pixels will become visible producing an image that looks grainy. Computer
screens typically display images using about 75 pixels per inch. Printed images usually require more.

The image in Figure 11.1 is represented using 110 pixels per inch. In total, it is 215 pixels wide
and 300 pixels high for a total of 64,500 pixels. This makes it a bit difficult to look at every single
pixel in the image. On the other hand, we can look at the individual pixels and the values used to
represent them if we focus on just a small region within the image. For example, the image below
shows just the right eye from Figure 11.1.

This image is just 19 pixels wide and 10 pixels high. It is represented using 190 pixel values. We
can see this in Figure 11.2 which shows the same image with each pixel enlarged 16 times. If this is
not clear, just step back and look at the image from a distance. As you move away from the page
the squares of gray will blend into an image of an eye.

We can show how numeric values are used to represent the brightness values in the image of the
eye by overlaying a table of the numeric values of the pixel brightnesses with an enlarged version of
the pixels themselves as shown in Figure 11.3. In this figure, you can clearly see that values close
to 255 are used to describe the brightest pixels at the edges of the image. On the other hand, the
darkest pixel in this image is described by the numeric value 51. Of course, inside the computer’s
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Figure 11.2: The right eye from Figure 11.1 enlarged by a factor of 16

Figure 11.3: The numbers describing pixel brightnesses for the right eye from Figure 11.1

memory, all that is really available is the collection of numeric values as shown in Figure 11.4.1

11.2 Matrices, Vectors, and Arrays

To write programs that work with images, we clearly need convenient ways to manipulate the
large collections of numbers that describe pixels. In chapter 10 we saw that it is possible to define
recursive classes to manage collections. All the collections we described using recursive classes,
however, were viewed as lists. We do not think of the collection of numbers that describes an image
as a list. As suggested by Figure 11.4, we think of these collections as tables. It would be best if
we could manipulate them as tables within Java programs.

Java and most other programming languages include a mechanism called arrays that makes it
possible to work with collections as either tables or lists. The notation used to work with arrays
is borrowed from the notations that mathematicians have used for years when discussing matrices
and vectors. If you look through a few linear algebra textbooks you will probably find a definition
that reads something like:

1The 754 in the title of this section is the number of words required to write the contents of this table out in the
form “two hundred and thirty seven, two hundred and forty, two hundred and forty one, two hundred and thirty
seven, ...” If you take the time to check this count, please let me know if it is wrong.
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237 240 241 237 231 231 226 223 224 230 234 235 241 242 235 237 233 231 226

234 232 227 217 219 222 209 193 183 165 137 147 174 201 218 221 219 215 213

225 210 200 203 207 202 180 148 126 99 75 78 92 117 145 162 171 173 179

211 199 188 176 151 127 125 131 139 115 81 71 69 79 90 95 106 139 166

201 182 158 111 65 69 93 87 81 75 60 56 56 64 70 75 77 133 186

203 167 110 72 84 103 93 125 138 61 77 66 51 57 77 69 76 159 212

211 180 143 168 196 206 147 66 61 65 160 118 70 59 69 85 118 186 227

234 231 233 239 236 230 211 124 66 110 201 165 119 89 68 100 177 209 232

236 236 236 238 235 232 227 220 202 209 214 185 201 160 138 170 216 226 234

235 235 235 235 235 233 221 218 217 208 199 196 203 200 220 224 230 233 235

Figure 11.4: The numbers describing pixel brightnesses for the right eye from Figure 11.1

Definition 1 A rectangular collection of m× n values of the form

A =





A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
... . . . ...

Am,1 Am,2 · · · Am,n





is called an m by n matrix.

When working with such a matrix, we use the name of the matrix, A, by itself to refer to the
entire collection and we use the name together with two subscript values, such as A3,5 to refer to
a particular element of the collection.

Similarly, with Java arrays, we can use the name of an array itself, pixels for example, to refer
to the entire collection, and the name together with subscript values to select a particular entry. In
Java, however, the values that specify the position of the desired element are not actually written
as subscripts. Instead, the values are placed in square brackets after the name of the array. For
example, we could write

pixels[3][5] = 255;

to make the brightness value associated with the pixel at position 3,5 equal to the number that
represents white. Since they are not actually positioned as subscripts, we often refer to the values
in square brackets as indices rather than subscripts.

An array name followed by appropriate indices is called a subscripted or indexed variable. Note
that a subscripted variable behaves just like a simple variable. When used within an expression, it
represents the value currently associated with the specified position within an array. When placed
on the left side of an assignment statement, it tells the computer to change the value associated
with the specified position within an array. For example, the statement

pixels[3][5] = pixels[3][5] + 1;
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might be executed if we wanted to make the pixel at position 3,5 in an image just a tiny bit brighter.
The values used to specify the indices in subscripted variables do not have to be literals. Just

as we can say Am,n as well as A3,5 in mathematical notation, we can say

pixels[m][n] = pixels[m][n] + 1;

to make the pixel at position m,n a little brighter. In fact, we can use arbitrarily complex expressions
to describe index values. Something like

pixels[m - n][ 2*n + 1] = pixels[(m + n)/2][2*n] + 1;

is perfectly acceptable as long as the values described by the subscript expressions fall within the
range of row and column numbers appropriate for the table named pixels.

Java’s conventions for numbering the elements of an array are slightly different from those used
by mathematicians working with matrices. Java starts counting at 0. That is, the top row is row
0 and the leftmost column is column 0. Also, when dealing with images in Java, the first index
indicates the column number and the second index indicates the row number. This corresponds to
the usual ordering mathematicians use for the x and y coordinates of a point in a graph, but is the
reverse of the usual ordering mathematicians use for row and column numbers in a matrix. Given
these differences, if we want to depict the elements of the array pixels in a manner similar to that
used for A in Definition 1 we would use the layout:

pixels =





pixels[0][0] pixels[1][0] . . . pixels[m− 1][0]
pixels[0][1] pixels[1][1] . . . pixels[m− 1][1]

...
... . . . ...

pixels[0][n− 1] pixels[1][n− 1] . . . pixels[m− 1][n− 1]





11.3 Array Declarations

Recall that Java requires that all names used to refer to values or objects in a program be declared
as local variables, instance variables or formal parameters. Declarations are formed by placing the
name we wish to use after a description of the type of value that will be associated with the name.
Depending on the situation, we may add modifiers like private and final or assign an initial value
to a variable in its delcaration. Examples include

String response;

and

private JTextArea log = new JTextArea( WIDTH, HEIGHT );

Java provides a special notation to distinguish declarations of names that refer to arrays from
declarations of names that refer to single values. If we declared the variable pixels as

int pixels;

Java would expect us to associate the name pixels with just a single int. To declare pixels as a
name that will refer to a table of values we must instead write
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int [ ] [ ] pixels;

This declaration illustrates the two kinds of information we must provide when declaring an array.
The word int tells Java the type of values that will make up the collection associated with the
array’s name. The square brackets between int and pixels indicate that pixels will be the name
of an array.

We place two pairs of brackets between int and pixels to indicate that two index values will
be used to identify each element of the array pixels. In Java, it is possible to declare an array
that uses more than two index values or just a single index value to identify specific elements. For
example, in mathematics it is common to describe polynomials of high degree by placing subscripts
on each term’s coefficients. That is, we might write

c0 × x0 + c1 × x1 + c2 × x2 + · · · + cn−1 × xn−1 + cn × xn

and talk about the sequence of coefficients

< c0, c1, c2, . . . , cn >

In Java, we would declare an array variable to hold the coefficient values using the declaration

int [] coefficients;

We say that the number of pairs of square brackets included in an array declaration determines the
dimensionality of the array. Arrays that require only one index value are called one dimensional
arrays, vectors, or sequences. Arrays that use two index values are called two dimensional arrays,
matrices, or tables. It is also possible to have three dimensional arrays, four dimensional arrays,
and so on.

Java arrays can also be used to manage collections of types other than int. For example, recall
the calculator example presented in Chapter 7. That program displayed the buttons that formed
its interface in a tabular pattern as shown in Figure 11.5. It might be useful to gather all of these
buttons into an array named keyboardButtons in such a way that each JButton in the window
could be accessed by specifying its row and column positions. That is,

keyboardButtons[2,2]

would refer to the “9” key. In this case, a declaration of the form

JButton [ ] [ ] keyboardButtons;

could be used to declare the variable keyboardButtons.

11.4 Array Constructions

Declaring a variable tells Java that we plan to use a name, but it does not tell Java what value or
object should be associated with that name. For example, if we declare

private JButton addButton;

and the first statement executed in our program that used addButton was
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Figure 11.5: Calculator interface in which the keys are arranged in a table

contentPane.add( addButton );

the program would fail with an error because addButton has no value associated with it (or equiv-
alently, it is associated with the value null).

To avoid such an error, we must include a construction that creates a button either in an
assignment such as

addButton = new JButton( "+" );

or as an initial value specification in a revised declaration of the form

private JTextField addButton = new JButton( "+" );

Array names work in very similar ways. Declaring an array variable such as

JButton [ ] [ ] keyboardButtons;

tells the computer that we plan to use keyboardButtons to refer to an array of JButtons, but
it does not tell the computer what collection of buttons the name should refer to. It does not
even tell the computer how big the collection will be. If the name keyboardButtons is used in the
calculator program shown in Figure 11.5, then the name should be associated with a 4 by 4 table
of buttons. If it is instead used in a program with an interface resembling a standard telephone
keypad, it should be associated with a 4 by 3 table of buttons. The computer cannot guess which
sort of table we want to work with. We have to tell it. We can do this by constructing a new array
and then assigning it to the variable name.

Array constructions looks like other constructions except that the parenthesized parameter list
that is included in other constructions is replaced by a series of one or more integer values placed
in square brackets. For example, to construct an array to hold the calculator buttons, we might
use an array construction of the form

new JButton[4][4]

It is common to include array constructions as initial value specifications in array variable declara-
tions such as

JButton [ ] [ ] keyboardButtons = new JButton[4][4];
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Note that an array construction creates an array and nothing else. In particular, the construc-
tion

new JButton[4][4]

does not create any buttons. We have to create the desired buttons separately and associate them
with the appropriate elements of the array.2 This can be done using assignments like

keyboardButtons[0][1] = new JButton( "4" );

and

keyboardButtons[3][3] = new JButton( "+" );

The numbers placed in the square brackets in an array construction determine the range of pos-
sible index values that can be used to select specific elements of an array. Each number determines
the number of distinct values that can be used for one of the index values required. For example, the
declaration shown above would associate keyboardButtons with an array whose elements would
be selected using two index values each falling between 0 and 3. Thus, there are four possible index
values: 0, 1, 2 and 3. The number 4, however, would not be acceptable as an index value.

A declaration of the form

JButton [ ] [ ] keyboardButtons = new JButton[3][4];

would associate keyboardButtons with an array more appropriate for holding the buttons of a
telephone keypad than a calculator. With this construction, the first index value used to select
an element of the array would have to be 0, 1, or 2 while the second could range from 0 to 3. If
keyboardButtons referred to the array created by this construction, the assignment

keyboardButtons[3][0] = new JButton( "3" ); // Warning: Incorrect code!

would cause a program error identified as an “array index out of bounds exception”. The correct
assignment to place the “3” key in the upper right corner of the table would be

keyboardButtons[2][0] = new JButton( "3" );

In general, if we construct a matrix by saying

new SomeType[WIDTH][HEIGHT]

2In associating index values with buttons in the calculator and telephone keypad examples, we are using the
same conventions we used for the table of pixel values. The first value in a pair of index values indicates horizontal
placement while the second determines vertical position. There is nothing in the Java language that forces us to use
this convention. We could equally well have switched the order of the index values.

According to standard mathematical conventions, when working with matrices the number indicating a value’s
vertical position comes first and the number for its horizontal position comes second. On the other hand, when
using Cartesian coordinates, mathematicians place the number indicating horizontal placement first and the vertical
position second. Java’s scheme for identifying the positions of pixel values in an image is based on the conventions
associated with Cartesian coordinates. Given the inconsistent conventions used in mathematical notation, we could
certainly justify using the matrix-like convention for our keyboard tables. It is our hope, however, that by consistently
specifying the horizontal position first and the vertical position second in all examples, we will minimize confusion.
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the first index values used with the array will range from 0 to WIDTH - 1, and the second index
values will range from 0 to HEIGHT - 1. The total number of entries in the matrix will be WIDTH
× HEIGHT.

We have seen that one distinction between primitive types like int and boolean and classes
like JButton is that we cannot construct values of primitive types. That is, we cannot say

new int( ... )

We can, however, construct arrays whose elements will be associated with values of primitive types.
For example, if our program includes the declaration

int [ ] [ ] pixels;

we could execute the assignment

pixels = new int[19][10];

to associate pixels with a table of int values just the right size to hold the pixel values shown in
Figure 11.4.

When we create an array of JButtons, Java does not create new JButtons to use as the elements
of the array. We have to write separate instructions to create buttons and associate them with the
array elements. Similarly, we have to write separate instructions to associate the correct int values
with the elements of an array like pixels. Initially, the computer will simply associate the value 0
with all elements of the array. Therefore, the values found in the array pixels after it is initially
constructed would describe the image

rather than

11.5 SImages and JLabels

While we know that a matrix full of zeroes can be interpreted as the description of a black rectangle,
an array like pixels is not an image. It is a collection of numbers, not a collection of colored dots
on the screen. We need some way to turn an array of numbers into an image we can see on a
computer screen. This ability is provided through a Java class namedSImage.3

There are several ways to construct an SImage. The constructor we present here is designed for
creating grayscale images. If pixels is a two dimensional table of ints, then a construction of the
form

new SImage( pixels )

3I bet you are wondering whether the “S” in SImage stands for “Sharper” or “Self”. Actually, it stands for Squint.
Like NetConnection, SImage is a part of the Squint library designed for use with this text. Within the standard
Java libraries, the functionality provided by SImage is supported through a class named BufferedImage. SImage is
designed to make the features of the BufferedImage class a bit more accessible.
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will create a grayscale image whose pixels’ brightnesses correspond to the values in the elements
of the array. As explained above, the values in the array used in such a construction should fall
between 0 and 255, but the SImage class is forgiving. Any value in the array that is less than 0
will be treated as if it was replaced with its absolute value, and any value greater than 255 will be
treated as 255.

Constructing an SImage creates a new representation of the image in the computer’s memory,
but it does not immediately make the image appear on the computer’s screen. In this way, SImages
are a bit like GUI components. For example, evaluating the construction

new JButton( "Click Me" )

immediately creates an object that represents a button in the computer’s memory, but we have to
do more to make the button appear on the screen. In the case of a GUI component, we have to
add the component to the contentPane to make it appear.

SImages are not GUI components. We cannot add them to the contentPane. Instead, displaying
an SImage is more like displaying a String. We cannot add a String to the contentPane, but
we can use the setText method to tell a JButton or JLabel to display the String as its contents.
In addition to the setText method, the JLabel and JButton classes provide a method named
setIcon. If we pass an SImage as a parameter in an invocation of this method, the JLabel or
JButton on which the method is invoked will display the image represented by the SImage.

Figure 11.6 shows a very simple program that uses this feature to display our 19 by 10 rectangle
of black pixels. The figure also includes a picture of the display the program would produce. The
program creates a JLabel named imageDisplay and adds it to the contentPane. It then creates
an SImage from a 19 by 10 table of ints. Finally, it uses the setIcon method to place this SImage
in the JLabel.

Of course, the little black rectangle displayed in Figure 11.6 is not the most interesting image
around. We could produce a slightly more interesting image by changing some of the pixel brightness
values from 0 to larger numbers. For example, if we add the instructions

pixels[7][4] = 150;
pixels[8][5] = 200;
pixels[9][4] = 255;
pixels[9][5] = 255;
pixels[10][4] = 200;
pixels[11][5] = 150;

to our program, the image displayed will look like:

(OK! I admit it is a bit hard to see, but with just a bit of imagination, you will realize that this
image looks just like a spiral galaxy floating in the blackness of space.) What we would really like
to do, however, is take a picture from an image file created using a digital camera or scanner and
access its pixel values within a Java program.

11.6 Image Files

The data in an image file can be converted into an SImage using a second form of constructor
associated with the class. To use this constructor, the programmer passes a String containing the
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import javax.swing.*;
import squint.*;

public class RectangleViewer extends GUIManager {
private final int WINDOW_WIDTH = 100, WINDOW_HEIGHT = 100;

private JLabel imageDisplay = new JLabel();

public ImageViewer() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT );
contentPane.add( imageDisplay );

int [][] pixels = new int[19][10];
SImage blackBox = new SImage( pixels );
imageDisplay.setIcon( blackBox );

}
}

Figure 11.6: A very simple program that displays an SImage

name of the image file as a parameter. For example, if the picture shown in Figure 11.1 is stored
in the file asaGray.jpg, then the construction

new SImage( "asaGray.jpg" )

will produce an Simage representing this photograph. Then, this SImage can be used as the icon
of a JLabel to make the picture appear on the screen.

Using this form of the SImage constructor, it is possible to write a program that can load an
image and then modify its pixel values in various ways such as resizing, cropping, or brightening.
That is, we can construct image processing software. When writing such a program, however, we
would not want to specify the file to use by typing a literal like "asaGray.jpg" into the program’s
code. Instead, we would like to make it possible for the program’s user to select the file to use
through a mechanism like the dialog box shown in Figure 11.7. To make this easy, the Java Swing
library contains a class called JFileChooser.

A JFileChooser is a GUI component, but unlike the components we have seen previously, a
JFileChooser does not become part of the existing program window. Instead, it pops up a new
window like the one shown in Figure 11.7.

The first step in using a JFileChooser is to construct one. The constructor is usually included
in a local variable declaration or an instance variable declaration of the form:

private JFileChooser chooser = new JFileChooser(... starting-directory ...);

The “starting-directory” determines the folder on your disk whose contents will appear in the
dialog box when it is first displayed. The user can navigate to other folders using the controls in
the dialog, but it is convenient to start somewhere reasonable. If no starting directory is specified,
the dialogue will start in the user’s home directory. Using the expression
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Figure 11.7: The JFileChooser “Open File” dialog box

new File( System.getProperty( "user.dir" ) )

will cause the dialog to start in the directory containing the program being executed.
The File class is a part of the standard java libraries used to represent file path names.

The construction shown here creates a new File object from the String returned by asking the
System.getProperty method to look up "user.dir", a request to find the users’ home directory.
To use the File class, you will have to include an import for "java.io.*" in your .java file.

To display the dialog associated with a JFileChooser, a program must execute an invocation
of the form

chooser.showOpenDialog( this )

Invoking showOpenDialog displays the dialog box and suspends the program’s execution until
the user clicks “Open” or “Cancel”. The invocation returns a value indicating whether the user
clicked “Open” or “Cancel”. The value returned if “Open” is clicked is associated with the name
JFileChooser.APPROVE OPTION. Therefore, programs that use this method typically include the
invocation in an if statement of the form

if ( chooser.showOpenDialog( this ) == JFileChooser.APPROVE OPTION ) {
... code to access and process the selected file ...

}
Finally, a String containing the name of the file selected by the user can be extracted from the

JFileChooser using an invocation of the form

chooser.getSelectedFile().getAbsolutePath()

The getSelectedFile method asks the JFileChooser to return a File object describing the file
chosen by the user. The getAbsolutePath method asks this File object to produce a String
encoding the file’s path name.

A program that uses a JFileChooser and an SImage constructor to load and display an image is
shown in Figure 11.8. A picture of the interface produced by this program is shown in Figure 11.9.
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import javax.swing.*;
import squint.*;
import java.awt.*;
import java.io.*;

// An image viewer that allows a user to select an image file and

// then displays the contents of the file on the screen

public class ImageAndLikeness extends GUIManager {
// The dimensions of the program’s window

private final int WINDOW_WIDTH = 400, WINDOW_HEIGHT = 500;

// Component used to display images

private JLabel imageDisplay = new JLabel( );

// Dialog box through which user can select an image file

private JFileChooser chooser =
new JFileChooser( new File( System.getProperty( "user.dir" ) ));

// Place the image display label and a button in the window

public ImageAndLikeness() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT );

contentPane.add( imageDisplay );
contentPane.add( new JButton( "Choose an image file" ) );

}

// When the button is clicked, display image selected by user

public void buttonClicked() {
if ( chooser.showOpenDialog( this ) == JFileChooser.APPROVE_OPTION ) {

String imageFileName = chooser.getSelectedFile().getAbsolutePath();

SImage pic = new SImage( imageFileName );
imageDisplay.setIcon( pic );

}
}

}

Figure 11.8: A simple image viewer
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Figure 11.9: A picture of the Maguires displayed by the program in Figure 11.8

11.7 Think Negative

We have seen that we can use a constructor to turn an array of brightness values into an SImage.
It is also possible to turn an SImage into an array containing the brightness values of its pixels
using a method named getPixelArray. This method is the final tool we need to write programs
that process images. We can now create an SImage from a file on our disk, get an array containing
its brightness values, change the values in this array to brighten, rotate, scale, crop, or otherwise
modify the image, and then create a new SImage from the modified array of values.

Perhaps the simplest type of image manipulation we can perform using these tools is a trans-
formation in which each pixel’s brightness value is replaced by a new value that is a function, f, of
the original value. That is, for each position in our array, we set

pixels[x][y] = f( pixels[x][y] )

As an example of such a transformation, we will show how to convert an image into its own negative.
Long, long ago, before there were computers, MP3 players, and digital cameras, people took

pictures using primitive cameras and light sensitive film like the examples shown in Figure 11.10.
In fact, some photographers still use such strange devices.

The film used in non-digital cameras contains chemicals that react to light in such a way that,
after being “developed” with other chemicals, the parts of the film that were not exposed to light
become transparent while the areas that had been exposed to light remain opaque. As a result,
after the film is developed, the image that is seen is bright where the actual scene was dark and dark
where the scene was bright. These images are called negatives. Figure 11.11 shows an image of what
the negative of the picture in Figure 11.1 might look like. As an example of image manipulation, we
will write a program to modify the brightness values of an image’s pixel so that the resulting values
describe the negative of the original image. A sample of the interface our program will provide is
shown in Figure 11.12.
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Figure 11.10: Some antiques: A film camera and rolls of 120 and 35mm film

Figure 11.11: A negative image

Figure 11.12: Interface for a program that creates negative images
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The function that describes how pixel values should be changed to produce a negative is simple.
The value 0 should become 255, the value 255 should become 0, and everything in between should
be scaled linearly. The appropriate function is therefore

f(x) = 255− x

It is easy to apply this function to any single pixel. The statement

pixels[x][y] = 255 - pixels[x][y];

will do the job. All we need to do is use loops to execute this statement for every pair of possible
x and y values.

To execute a statement for every possible value of x and y, we need some way to easily determine
the correct range of index values for an image’s table of pixels. The SImage class provides two
methods that help. The methods getWidth and getHeight will return the number of columns and
rows of pixels in an image repectively. Thus, we can use a loop of the form:

int x = 0;
while ( x < pixels.getWidth() ) {

// Do something to all the pixels in column x

...
x++;

}

to execute some statements for each possible x value. To execute some code for every possible
combination of x and y values, we simply put a similar loop that steps through the y values inside
of this loop. The result will look like:

int x = 0;
while ( x < pixels.getWidth() ) {

int y = 0;
while ( y < pixels.getHeight() ) {

// Do something to pixels[x][y]

...
y++;

}

x++;
}

This is an example of a type of nested loop that is frequently used when processing two dimensional
arrays.

The complete program to display negative images is shown in Figure 11.13. The nested loops are
placed in the buttonClicked method between an instruction that uses getPixelArray to access
the brightness values of the original image and a statement that uses an SImage construction to
create a new image from the modified array of pixel values.
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// A program that can display an image and its negative in a window

public class NegativeImpact extends GUIManager {
private final int WINDOW_WIDTH = 450, WINDOW_HEIGHT = 360;

// The largest brightness value used for a pixel

private final int BRIGHTEST_PIXEL = 255;

// Used to display the original image and the modified version

private JLabel original = new JLabel( ), modified = new JLabel( );

// Dialog box through which user can select an image file

private JFileChooser chooser = new JFileChooser( );

// Place two empty labels and a button in the window initially

public NegativeImpact() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT );
contentPane.add( original );
contentPane.add( modified );
contentPane.add( new JButton( "Show Images" ) );

}

// Let the user pick an image, then display the image and its negative

public void buttonClicked() {
if ( chooser.showOpenDialog( this ) == JFileChooser.APPROVE_OPTION ) {

String imageFileName = chooser.getSelectedFile().getAbsolutePath();
SImage pic = new SImage( imageFileName );
original.setIcon( pic );

// Replace every pixel’s value by its negative equivalent

int [][] pixels = pic.getPixelArray();
int x = 0;
while ( x < pic.getWidth() ) {

int y = 0;
while ( y < pic.getHeight() ) {

pixels[x][y] = 255 - pixels[x][y];
y++;

}
x++;

}

modified.setIcon( new SImage( pixels ) );
}

}
}

Figure 11.13: A program to display images and their negatives
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11.8 for by for

Each of the nested loops used in Figure 11.13 has the general form:

int variable = initial value;
while ( termination condition ) {

... statement(s) to do some interesting work ...
...

statement to change the value of variable;
}

Loops following this pattern are so common, that Java provides a shorthand notation for writing
them. In Java, a statement of the form

for ( α; β; γ ) {
σ

}

where α and γ are statements or local variable declarations,4 β is any boolean expression, and σ is
any sequence of 0 or more statements and declarations, is defined to be equivalent to the statements

α;
while ( β ) {

σ;
γ

}

A statement using this abbreviated form is called a for loop. In particular, the for loop

for ( int x = 0; x < pixels.getWidth(); x++ ) {
... statement(s) to process column x

}

is equivalent to the while loop

int x = 0;
whilte ( x < pixels.getWidth() ) {

... statement(s) to process column x

x++;
}

To illustrate this, a version of the buttonClicked method from Figure 11.13 that has been revised
to use for loops in place of its nested while loops is shown in Figure 11.14

We will be writing loops like this frequently enough that the bit of typing saved by using the
for loop will be appreciated. More importantly, as you become familiar with this notation, the for
loop has the advantage of placing three key components of the loop right at the beginning where
they are easy to identify. These include:

4In all of our examples, α and γ will each be a single declaration or statement, but in general Java allows one to
use lists of statements and declarations separated by commas where we have written α and γ.
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// Let the user pick an image, then display the image and its negative

public void buttonClicked() {
if ( chooser.showOpenDialog( this ) == JFileChooser.APPROVE_OPTION ) {

String imageFileName = chooser.getSelectedFile().getAbsolutePath();
SImage pic = new SImage( imageFileName );
original.setIcon( pic );

// Replace every pixel’s value by its negative equivalent

int [][] pixels = pic.getPixelArray();
for ( int x = 0; x < pic.getWidth(); x++ ) {

for ( int y = 0; y < pic.getHeight(); y++ ) {
pixels[x][y] = 255 - pixels[x][y];

}
}

modified.setIcon( new SImage( pixels ) );
}

}

Figure 11.14: Code from Figure 11.13 revised to use for loops

• the initial value,

• the termination condition, and

• the way the loop moves from one step to the next

There is, by the way, no requirement that all the components of a for loop’s header fit on one
line. If the components of the header become complicated, is it good style to format the header so
that they appear on separate lines as in:

for ( int x = 0;
x < pixels.getWidth();
x++ ) {

... statement(s) to process column x

}

11.9 Moving Experiences

An alternative to changing the brightness values of an image’s pixels is to simply move the pixels
around. For example, most image processing programs provide the ability to rotate images or to
flip an image vertically or horizontally. We can perform these operations by moving values from
one position in a pixel array to another.

To start, consider how to write a program that can tip an image on its side by rotating the
picture 90◦ counterclockwise. We will structure the program and its interface very much like the
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Figure 11.15: Window of a program that can rotate an image counterclockwise

program to display an image and its negative shown in Figure 11.13. When the user clicks the
button in this new program’s window, it will allow the user to select an image file, then it will
display the original image and a rotated version of the image side by side in its window. A sample
of this interface is shown if Figure 11.15. The only differences between the program that displayed
negative images and this program will be found in the code that manipulates pixel values in the
buttonClicked method.

If the original image loaded by this program is m pixels wide and n pixels high, then the rotated
image will be n pixels wide and m pixels high. As a result, we cannot create the new image by just
moving pixel values around in the array containing the original image’s brightness values. We have
to create a new array that has n columns and m rows. Assuming the original image is named pic,
the needed array can be constructed in a local variable declaration:

int [][] result = new int[pic.getHeight()][pic.getWidth()];

Then, we can use a pair of nested loops to copy every value found in pixels into a new position
within result.

At first glance, it might seem that we can move the pixels as desired by repeatedly executing
the instruction

result[y][x] = pixels[x][y]; // WARNING: This is not correct!

Unfortunately, if we use this statement, the image that results when our program is applied to
the cow picture in Figure 11.15 will look like what we see in Figure 11.16. To understand why
this would happen and how to rotate an image correctly, we need to do a little bit of analytic cow
geometry.

Figure 11.17 shows an image of a cow and a correctly rotated version of the same image. Both
are accompanied by x and y axes corresponding to the scheme used to number pixel values in an
array describing the image. Let’s chase the cow’s tail as its pixels move from the original image on
the left to the rotated image on the right.

In the original image, the y coordinates of the pixels that make up the tail fall between 20
and 30. If you look at the image on the right, it is clear that the x coordintes of the tail’s new

318



Figure 11.16: A cow after completing a double flip

Figure 11.17: Geometry of pixel coordinate changes while rotating an image

position fall in the same range, 20-30. It seems as if y-coordinates from the original image become
x-coordinates in the rotated image.

On the other hand, in the original image, the x coordinates of the pixels that make up the tail
fall between 200 and 210. The y coordinates of the same pixels in the rotated version fall in a very
different range, 0 to 10! Similarly, if you look at the x-coordinate of the edge of the cow’s right
ear in the original image it is about 10. In the rotated image, the edge of the same ear has an
x coordinate of 200. It appears that small x coordinates become large y coordinates and large x
coordinates become small y coordinates.

What is happening to the x coordinates is similar to what happened to brightness values when
we made negative images. To convert the brightness value of a pixel into its negative value, we
subtracted the original value from the maximum possible brightness value, 255. Similarly, to convert
an x coordinate to a y coordinate in the rotated image, we need to subtract the x coordinate from
the maximum possible x coordinate in the original image. The maximum x coordinate in our cow
image is 210. Using this value, the x coordinate of the tip of the tail, 207, become 210− 207 = 3,
a very small value as expected. Similarly, the x coordinate of the ear, 10, becomes 210− 10 = 200.

Therefore, the statement we should use to move pixel values to their new locations is

result[y][(pic.getWidth() - 1) - x] = pixels[x][y];
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The expression used to describe the maximum x coordinte is

(pic.getWidth() - 1)

rather than pic.getWidth() since indices start at 0 rather than 1.
The key details for a program that uses this approach to rotate images are shown in Figure 11.18.

As noted in the figure, this program is very similar to the code shown for generating a negative
version of an image that we showed in Figure 11.13. In this example, however, we have placed the
image manipulation code in a separate, private method. This is a matter of good programming
style. It separates the details of image processing from the GUI interface, making both the new
rotate method and the buttonClicked methods short and very simple.

Our explanation of why we use the expression

(picture.getWidth() - 1) - x

in the statement

result[y][(picture.getWidth() - 1) - x] = pixels[x][y];

suggests that it is possible to use a similar technique if we want to simply flip the pixels of an image
horizontally or vertically. In fact, only two changes are required to convert the program shown in
Figure 11.18 into a program that will flip an image horizontally. We would replace the statement
in the body of the nested loops:

result[y][(picture.getWidth() - 1) - x] = pixels[x][y];

with:

result[(picture.getWidth() - 1) - x][y] = pixels[x][y];

In addition, the result array would now have to have exactly the same dimensions as the pixels
array. Therefore, we would replace the declaration of result with

int [][] result = new int[picture.getWidth()][picture.getHeight()];

Finally, although not required, it would be good form to change the name of the method from
rotate to horizontalFlip. The code for the new horizontalFlip method is shown in Fig-
ure 11.19. A sample of what the resulting program’s display might look like is shown in Figure 11.20.

In the rotate method, it is clear that the result matrix needs to be separate from the pixels
matrix because they have different dimensions. In the horizontalFlip method, the two arrays
have the same dimensions. It is no longer clear that we need a separate result array. In the
program to produce negative images, we made all of our changes directly in the pixels array. It
might be possible to use the same approach in horizontalFlip. To try this we would remove the
declaration of the result array and replace all references to result with the name pixels.

The revised horizontalFlip method is shown in Figure 11.21. Unfortunately, the program
will not behave as desired. Instead, a sample of how it will modify the image selected by its user
is shown in Figure 11.22.

To understand why this program does not behave as we might have hoped, think about what
happens each time the outer loop is executed. The first time this loop is executed, x will be
0, so (picture.getWidth() - 1) - x will describe the index of the rightmost column of pixels.
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// An program that allows a user to select an image file and displays

// the original and a verion rotated 90 degrees counterclockwise

public class BigTipper extends GUIManager {
private final int WINDOW_WIDTH = 450, WINDOW_HEIGHT = 360;

...

// Variable declarations and the constructor have been omitted to save space

// They would be nearly identical to the declarations found in Figure 11.13

...

// Rotate an image 90 degrees counterclockwise

private SImage rotate( SImage picture ) {
int [][] pixels = picture.getPixelArray();
int [][] result = new int[picture.getHeight()][picture.getWidth()];

for ( int x = 0; x < picture.getWidth(); x++ ) {
for ( int y = 0; y < picture.getHeight(); y++ ) {

result[y][(picture.getWidth() - 1) - x] = pixels[x][y];
}

}

return new SImage( result );
}

// Display image selected by user and a copy that is rotated 90 degrees

public void buttonClicked() {
if ( chooser.showOpenDialog( this ) == JFileChooser.APPROVE_OPTION ) {

String imageFileName = chooser.getSelectedFile().getAbsolutePath();

SImage pic = new SImage( imageFileName );
original.setIcon( pic );
modified.setIcon( rotate( pic ) );

}
}

}

Figure 11.18: The buttonClicked method for a program to rotate images
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// Flip an image horizontally

private SImage horizontalFlip( SImage picture ) {
int [][] pixels = picture.getPixelArray();
int [][] result = new int[picture.getWidth()][picture.getHeight()];

for ( int x = 0; x < picture.getWidth(); x++ ) {
for ( int y = 0; y < picture.getHeight(); y++ ) {

result[(picture.getWidth() - 1) - x][y] = pixels[x][y];
}

}

return new SImage( result );
}

Figure 11.19: A method to flip an image horizontally

Figure 11.20: Asa Gray meets Asa Gray
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// WARNING: THIS METHOD IS INCORRECT!

private SImage horizontalFlip( SImage picture ) {
int [][] pixels = picture.getPixelArray();

for ( int x = 0; x < picture.getWidth(); x++ ) {
for ( int y = 0; y < picture.getHeight(); y++ ) {

pixels[(picture.getWidth() - 1) - x][y] = pixels[x][y];
}

}

return new SImage( pixels );
}

Figure 11.21: A failed attempt to flip an image horizontally without a separate result array

Figure 11.22: A Siamese twin?
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Executing the inner loop will therefore copy all of the entries in the leftmost column of the image
to the rightmost column. Next, when x is 1, the second column from the left will be copied to
the second column from the right. As we progress to larger x values, columns from the right will
appear on the left in reverse order. This sounds like exactly what we wanted.

If we started with the image shown in Figure 11.1, however, by the time the value of x reaches
the mid point of the image, the numbers in the pixels array would describe the picture shown on
the right in Figure 11.22. The left side of the original image has been correctly flipped and copied
to the right side. In the process, however, the original contents of the right half of the image have
been lost. Therefore, as the loop continues and copies columns from the right half of the image to
the left, it will be copying columns it had earlier copied from the left half of the image rather than
copying columns from the right half of the original image. In fact, it will copy these copies right
back to where they came from! As a result, the remaining iterations of the loop will not appear to
change anything. When the loop is complete, the image will look the same as it did when only half
of the iterations had been executed.

This is a common problem when one writes code to interchange values within a single array.
In many cases, the only solution is to use a second array like result to preserve all of the original
values in the array while they are reorganized. In this case, however, is is possible to move the
pixels as desired without an additional array. We just need an int variable to hold one original
value while it is being interchanged with another.

To see how this is done, consider how the pixel values in the upper left and upper right corners
of an image should be interchanged during the process of flipping an image horizontally. The upper
left corner should move to the upper right corner, and the upper right should move to the upper
left. If we try to do this using a pair of assignments like

pixels[picture.getWidth() - 1][0] = pixels[0][0];
pixels[0][0] = pixels[picture.getWidth() - 1][0];

we will end up with two copies of the value originally found in pixels[0][0] because the first
assignment replaces the only copy of the original value of pixels[picture.getWidth() - 1][0]
before it can be moved to the upper left corner. On the other hand, if we use an additional variable
to save this value as in

int savePixel = pixels[picture.getWidth() - 1][0];
pixels[picture.getWidth() - 1][0] = pixels[0][0];
pixels[0][0] = savePixel;

the interchange will work correctly. If we perform such an interchange for every pair of pixels, the
entire image can be flipped without using an additional array.

The code for a correct horizontalFlip method based on this idea is shown in Figure 11.23.
Note that the termination condition for the outer for loop in this program is

x < picture.getWidth()/2

rather than

x < picture.getWidth()

Since each execution of the body of the loop interchanges two columns, we only need to execute the
inner loop half as many times as the total number of columns. Can you predict what the program
would do if we did not divide the width by 2 in this termination condition?
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// Flip an image horizontally

private SImage horizontalFlip( SImage picture ) {
int [][] pixels = picture.getPixelArray();

for ( int x = 0; x < picture.getWidth()/2; x++ ) {
for ( int y = 0; y < picture.getHeight(); y++ ) {

int savePixel = pixels[(picture.getWidth() - 1) - x][y];
pixels[(picture.getWidth() - 1) - x][y] = pixels[x][y];
pixels[x][y] = savePixel;

}
}

return( new SImage( pixels ) );
}

Figure 11.23: A method to flip a pixel array horizontally without creating a secondary array

11.10 Arrays of Arrays

Despite the fact that we have been showing programs that use two dimensional arrays, the Java
language does not really include two dimensional arrays. The trick here is that technically Java
only provides one dimensional arrays, but it is possible to define a one dimensional array of any
type. We can have a one dimensional array of JButtons, a one dimensional array of ints, or even
a one dimensional array of one dimensional arrays of ints. This is how we can write programs
that appear to use two dimensional arrays. In Java’s view, a two dimensional array is just a one
dimensional array of one dimensional arrays.

A picture does a better job of explaining this than words. In Figure 11.4 we showed how the
pixel values that describe the right eye from the photograph from Figure 11.1 could be visualized as
a table. In most of the examples in this chapter, we have assumed that such a table was associated
with a “two dimensional” array variable declared as

int [][] pixels;

Figure 11.24 shows how the values describing the eye would actually be organized when stored in
the pixels array. The array pixels shown in this figure is a one dimensional array containing 19
elements. Its elements are not ints. Instead, each of its elements is itself a one dimensional array
containing 10 ints.

This is not just a way we can think about tables in Java, it is the way tables are represented
using Java arrays. As a result, in addition to being able to access the ints that describe individual
pixels in such an array, we can access the arrays that represent entire columns of pixels. For
example, a statement like

int somePixel = pixels[x][y];

can be broken up into the two statements

int [] selectedColumn = pixels[x];
int somePixel = selectedColumn[y];
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Figure 11.24: A two dimensional structure represented as an array of arrays

The expression pixels[x] extracts a single element from the array pixels. This element is the
array that describes the entire xth column. The second line then extracts the yth element from the
array that was extracted from pixels.

This fact about Java arrays has several consequences. We will discuss one that is quite simple
but practical and one that is more subtle and a bit esoteric.

First, Java provides a way for a program to determine the number of elements in any array. If
x is the name of an array, then x.length describes the number of elements in the array.5 We did
not introduce this feature earlier, because it is difficult to understand how to use this feature with
a two dimensional array before understanding that two dimensional arrays are really just arrays
of arrays. Suppose you think of pixels as a table like the one shown in Figure 11.4. What value
would you expect pixels.length to produce? You might reasonably answer 19, 10, or even 190.
The problem is that tables don’t have lengths. Tables have widths and heights. On the other hand,
if you realize that pixels is the name of an array of arrays as shown in Figure 11.24, then it is clear
that pixels.length should produce 19. In general, if x is a two dimensional array, then x.length
describes the width of the table.

It should also be clear how to use length to determine the height of a table. The height of
an array of arrays is the length of any of the arrays that hold the columns. Thus, for our pixels
array,

pixels[0].length

will produce the height of the table, 10. In general, if x is the name of an array representing a
table, x[0].length gives the height of the table. Of course, for the pixels array, we could also
use

5Unfortunately, while the designers of Java used the name length for both the mechanism used to determine the
number of letters in a String and the size of an array, they made the syntax just a bit different. When used with a
String, the name length must be followed by a pair of parentheses as in word.length(). When used with arrays,
no parentheses are allowed.
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// Flip an image horizontally

private SImage horizontalFlip( SImage picture ) {
int [][] pixels = picture.getPixelArray();

for ( int x = 0; x < pixels.length/2; x++ ) {
for ( int y = 0; y < pixels[0].length; y++ ) {

int savePixel = pixels[(pixels.length - 1) - x][y];
pixels[(pixels.length - 1) - x][y] = pixels[x][y];
pixels[x][y] = savePixel;

}
}

return( new SImage( pixels ) );
}

}

Figure 11.25: Using .length to control a loop

pixels[1].length

or

pixels[15].length

to describe the height of the table. We could not, however, use

pixels[25].length

as the index value 25 is out of range for the pixels array. In general, since using the index value
0 is more likely to be in range than any other value, it is a convention to say

x[0].length

to determine the height of a table.
The termination conditions in loops that process arrays often use .length. For example,

Figure 11.25 shows the code of the horizontalFlip method revised to use .length rather than
the SImage methods getWidth and getHeight.

The second consequence of the fact that two dimensional arrays are really arrays of arrays is
that a program can build a two dimensional array piece by piece rather than all at once. This
makes it possible to build arrays of arrays that cannot be viewed as simple, rectangular tables.

We know that the construction in the declaration

int [][] boxy = new int [5][7];

will produce an array with the structure shown in Figure 11.26. In Java, a construction of the form

new SomeType[size][]

creates an array with size elements each of which can refer to another array whose elements belong
to SomeType without actually creating any arrays of SomeType. As a result, the declaration
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Figure 11.26: A small, rectangular array of arrays

int [][] boxy = new int[5][];

would create the five element array that runs across the top of Figure 11.26 but not create the five
arrays containing zeroes that appear as the columns in that figure. The columns could then be
created and associated with the elements of boxy by a loop of the form

for ( int x = 0; x < boxy.length; x++ ) {

boxy[x] = new int[7];

}

Simple variations in the code of this loop can be used to produce two dimensional arrays that
are not rectangular. For example, if we followed the declaration

int [][] trapezoid = new int[5][];

with a loop of the form

for ( int x = 0; x < trapezoid.length; x++ ) {

trapezoid[x] = new int[ 3 + x ];

}

the structure created would look like the diagram in Figure 11.27. Each of the columns in this
array is of a different length than the others. If we put the columns together to form a table we
would end up with the collection shown in Figure 11.28.

There are other ways to associate element values with the entries of a two dimensional array
that lead to even stranger structures. Consider the code

int [][] sharing = new int[5][];

for ( int x = 0; x < sharing.length - 1; x++ ) {
sharing[x] = new int[ 7 ];

328



Figure 11.27: An array of arrays that is not rectangular

Figure 11.28: A non-rectangular table

}

sharing[ 4 ] = sharing[ 3 ];

This creates the structure shown in Figure 11.29. Here, two of the entries in the array of arrays
are actually the same array.

In all of these diagrams we have shown the elements of int arrays filled with zeroes as they
would be initialized by the computer. As a result, immediately after executing the code shown
above, the elements sharing[4][4] and sharing[3][4] would both have the value 0. If we then
executed the assignment

sharing[3][4] = 255;

the value associated with sharing[3][4] would be changed as expected. In addition, however, after
this assignment, sharing[4][4], would also have the value 255. Such behavior can make it very
difficult to understand how a program works or why it doesn’t. Therefore, we would discourage you
from deliberately constructing such arrays. It is nevertheless important to understand that such
structures are possible when debugging a program since they are sometimes created accidentally.

11.11 Summing Up

In the preceding sections we have examined examples of a variety of algorithms that process values
in an array independently. There are many other algorithms that instead collect information about
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Figure 11.29: An array of arrays in which one element value is associated with two positions

all of the elements in an array or about some particular subgroup of elements. For example, when
working with an array of pixel values we might want to find the brightest pixel value, the number
of pixels brighter than 200, or the brightness value that appears most frequently in the top half of
an image. As a simple example of such an algorithm, we will look at how to calculate the average
brightness value of a specified square of pixels in an image.

This particular calculation has a nice application. Suppose we want to shrink an image by an
integer factor. That is, we want to reduce the size of an image by 1/2, or 1/5, or in general 1/n.
We can do this by computing the average brightness of non-overlapping, n by n squares of pixels
in the original image and using the averages as the brightness values for pixels in an image whose
width and height are 1/n th the width and height of the original.

Figure 11.30 illustrates the process we have in mind. At the top of the figure, we show a version
of the familiar eye we have used in earlier examples. The image is enlarged so that individual pixels
are visible. In addition, we have outlined 3 by 3 blocks of pixels. Because the image dimensions are
not divisible by 3, pixels in the last row and column do not fall within any of these 3 by 3 blocks.

The bottom of the figure shows a version of the eye reduced to 1/3rd of its original size (but
still enlarged so that individual pixels are visible). Each pixel in this smaller version corresponds to
one of the 3 by 3 blocks of the original. The arrows in the figure connect the pixels in the leftmost
3 by 3 blocks of the original to the corresponding pixels in the reduced image. The brightness of
each pixel in the reduced image was determined by averaging the values of the nine pixels in the
corresponding block of the original image.

This is not the ideal way to reduce an image. As this example illustrates, it completely ignores
the pixels that don’t fall in any of the square blocks. It does, however, produce visually reasonable
results. For example, Figure 11.31 show the results of applying this technique to produce reduced
versions of another image we have seen before ranging from half size to 1/12.

A key step in implementing such a scaling algorithm is writing code to compute the average of
a specified block of pixels. The block can be specified by giving the indices of its upper left corner
and its size. To add up the values in such a block, we will use a pair of doubly nested loops to
iterate over all pairs of x and y coordinates that fall within the block. These loops will look very
much like the nested loops we have seen in early examples except that they will not start at 0 and
they must stop when they reach the edges of the block rather than the edges of the entire pixel
array. Once we have the sum of all pixel values, we can compute the average by simply dividing
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Figure 11.30: Scaling an image by averaging blocks of pixel brightnesses

Figure 11.31: Scaling an image repeatedly
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// Determine average brightness of a block of size by size pixels

// at position (left, top)

private int average( int [][] pixels, int left, int top, int size ) {
int sum = 0;

for ( int x = left; x < left + size; x++ ) {
for ( int y = top; y < top + size; y++ ) {

sum = sum + pixels[x][y];
}

}
return sum/(size*size);

}

Figure 11.32: A method to calculate the average brightness of a block of pixels

// Create a copy of an image reduced to 1/s of its original size

private SImage scale( SImage original, int s ) {
int [][] pixels = original.getPixelArray();
int [][] result = new int[ pixels.length/s][pixels[0].length/s ];

for ( int x = 0; x < result.length; x++ ) {
for ( int y = 0; y < result[0].length; y++ ) {

result[x][y] = average( pixels, s*x, s*y, s );
}

}
return new SImage( result );

}

Figure 11.33: A method to scale an image to 1/s its original size

the sum by the number of pixels in the block.
The code for a method to compute block averages in this way is shown in Figure 11.32. The

location of the block to be averaged is provided through the parameters left and top that specify
the coordinates of the left and top edges of the block. The parameter size determines how wide
and high the block should be. As a result, the expressions left + size and top + size describe
the coordinates of the right and bottom edges of the block. These expressions are used in the
termination conditions of the loops in the method body.

Given the average method, it is easy to write a method to scale an entire image. The code
for such a method is shown in Figure 11.33. The second parameter, s, specifies the desired scaling
factor. Therefore, the width and height of the resulting image can be determined by dividing the
width and height of the original by s. The method begins by creating an array result using the
reduced width and height. The body of the loop then fills the entries of this result array by
repeatedly invoking average on the appropriate block of original pixel values.

The complete code of the program that produced the image shown in Figure 11.31 is shown in
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Figure 11.34. It repeatedly applies the scale method for scaling factors ranging from 1 to 1/12th
and displays each scaled image within a separate JLabel in its window.

11.12 Purple Cows?

Some of you may have already recognized that something is missing in the image shown in Fig-
ure 11.31. The cows are not purple! If not, consider the image of lego robots processed by our
image scaling program shown in Figure 11.35. If you are reading a printed/copied version of this
text, then the robots will all appear to be constructed out of gray Legos. It is possible to get gray
Legos. In fact, a few of the pieces of the robot pictured in the figure actually are gray. Most of the
pieces, however, are more typical Lego colors: bright reds, blues and greens.

Although we have focused on how to manipulate grayscale images, the SImage class does provide
the ability to handle color images. In this section, we will show you how to write programs designed
to handle color images.

First, when you load the contents of image file that describes a color picture using a construction
like the one in the following variable declaration

SImage pic = new SImage( "colorfulRobot.jpg" );

the SImage you create retains the color information. If imageLabel is the name of a JLabel in
your program’s window and you display the SImage by executing

original.setIcon( pic );

it will appear in color on your screen.
The colors vanish when you access the information about individual pixels by invoking the

getPixelArray method. This method returns an array of values that only describe the brightnesses
of the pixels, not their colors. Fortunately, SImage provides several ways to get information about
pixel colors.

As mentioned early in this chapter, one common scheme for describing the colors in a digital
image is to describe how a color can be mixed by combining red, green and blue light. This is
typically done by describing the brightness of each color component using a number between 0 and
255 much as we have been using such values to describe overall brightness. This is known as the
RGB color scheme.

SImage provides three methods that can be used to access the brightness values for image pixels
corresponding to each of these three primary colors. In particular, an invocation of the form

int [][] redBrightnesses = pic.getRedPixelArray();

will return an array of values describing the “redness” of the pixels in an image. Similar methods
named getGreenPixelArray and getBluePixelArray can be used to access the “greenness” and
“blueness” values.

The SImage class also provides a constructor designed for programs that want to modify the
values describing the redness, greenness and blueness of an image’s pixels. This constructor takes
three tables of pixel values as parameters. All three tables must have the same dimensions. The
first table is interpreted as the redness values for a new image’s pixels. The second and third are
interpreted as the greenness and blueness values respectively. Therefore, if we declare
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// A program that allows a user to select an image file and displays

// the original and a series of copies ranging from 1/2 to 1/12 the original

public class CheaperByTheDozen extends GUIManager {
// The dimensions of the program’s window

private final int WINDOW_WIDTH = 870, WINDOW_HEIGHT = 380;

// Dialog box through which user can select an image file

private JFileChooser chooser =
new JFileChooser( new File( System.getProperty( "user.dir" ) ));

// Place the image display labels and a button in the window

public CheaperByTheDozen() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT );

JButton but = new JButton( "Choose an image file" );
contentPane.add( but );

}

// Determine average brightness of a block of size by size pixels

// at position (left, top)

private int average( int [][] pixels, int left, int top, int size ) {
// See Figure 11.32 for method’s body

}

// Create a copy of an image reduced to 1/s of its original size

private SImage scale( SImage original, int s ) {
// See Figure 11.33 for method’s body

}

// Display image selected by user and copies of reduced sizes

public void buttonClicked() {
if ( chooser.showOpenDialog( this ) == JFileChooser.APPROVE_OPTION ) {

SImage pic = new SImage( chooser.getSelectedFile().getAbsolutePath() );

for ( int s = 1; s < 12; s++ ) {
JLabel modified = new JLabel( );
modified.setIcon( scale( pic, s ) );
contentPane.add( modified );

}
}

}
}

Figure 11.34: A program to display a series of scaled copies of an image
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Figure 11.35: Red is grey and yellow white, but we decide which is right...

// Create a copy of a color image reduced to 1/s of its original size

private int [][] scaleBrighnesses( int [][] pixels, int s ) {
int [][] result = new int[ pixels.length/s][pixels[0].length/s ];

for ( int x = 0; x < result.length; x++ ) {
for ( int y = 0; y < result[0].length; y++ ) {

result[x][y] = average( pixels, s*x, s*y, s );
}

}
return result;

}

Figure 11.36: A method to scale a table of pixel brightness values

int [][] rednesses, greennesses, bluenesses;

as the names of two dimensional arrays and associate these names with appropriate arrays of ints,
the construction

new SImage( rednesses, greennesses, bluenesses )

can be used to create an image described by the contents of the arrays.
To illustrate how these mechanisms can be used, consider how we can revise our code for scaling

images to work for color images instead of just grayscale images. The basic idea is to break the
grayscale image scaling code found in Figure 11.33 into two parts. The first statement in the
method is specific to processing the gray levels of an image. The for loops that form the remainder
of the method correctly describe how to scale an array of brightness values whether they describe
pixel graynesses, rednesses, greennesses, or bluenesses. Therefore, the first step is to move these
for loops into a separate method designed to process an array of brightness values independent of
its source. This method, named scaleBrighnesses is shown if Figure 11.36. Most of its code is
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// Create a copy of an image reduced to 1/s of its original size

private SImage scale( SImage picture, int s ) {
int [][] rednesses = picture.getRedPixelArray( );
int [][] greennesses = picture.getGreenPixelArray( );
int [][] bluenesses = picture.getBluePixelArray( );

rednesses = scaleBrighnesses( rednesses, s );
greennesses = scaleBrighnesses( greennesses, s );
bluenesses = scaleBrighnesses( bluenesses, s );

return new SImage( rednesses, greennesses, bluenesses );
}

Figure 11.37: A colorful image scaling method

identical to the scale method from Figure 11.33. The big changes are that it takes and returns two
dimensional arrays of ints rather than SImages. Note in particular, that this method continues to
use the unmodified average method. As originally written, the average method did not depend
on the fact that the array it was processing contained grayness values.

Given the scaleBrighnesses method, it is easy to write a scale method that handles colored
images. We simply get the arrays that describe the image’s redness, greenness, and blueness, process
each of them using scaleBrightnesses, and finally construct a new image with the results. The
code to do this is shown in Figure 11.37.

For those who want to replace the somewhat repetitive code in Figure 11.37 with some loops,
the SImage class provides an alternate method of working with the three arrays describing the
colors that compose an image. First, the SImage class provides names for the three colors that
make up an image, SImage.RED, SImage.GREEN, and SImage.BLUE. In addition, SImage provides
a method named getPixelArrays that returns a three dimensional array of ints. That is, it can
be invoked in a statement of the form

int [][][] brightnesses = picture.getPixelArrays();

If brightnesses is declared in this way, then

brightnesses[SImage.RED]

will be the array that would have been obtained by invoking

picture.getRedPixelArray()

The expressions brightnesses[SImage.GREEN] and brightnesses[SImage.BLUE] would similarly
produce two dimensional arrays describing the greenness and blueness of image pixels. Finally, there
is an SImage constructor that accepts a three dimensional array like brightnesses as a parameter.

The names SImage.RED, SImage.GREEN, and SImage.BLUE actually refer to consecutive int
values. As a result, they can be used to write loops to process the three pixel arrays that describe
an image. Figure 11.38 shows an alternate version of the scale method that uses such a loop.
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private SImage scale( SImage picture, int s ) {
int [][][] pixels = picture.getPixelArrays();
for ( int c = SImage.RED; c <= SImage.BLUE; c++ ) {

pixels[c] = scaleBrighnesses( pixels[c], s );
}
return new SImage( pixels );

}

Figure 11.38: Scaling with a three dimensional array and a loop

11.13 Summary

In this chapter, we have introduced the basic mechanisms required to work with arrays in Java.
While our focus has been on arrays that represent digital images, the techniques we have explored
are applicable to arrays of any kind. We have seen how to declare array variables, construct arrays,
and access individual elements of arrays. We have also provided examples to illustrate several of
the most important patterns used when writing code to manipulate data within an array. We have
seen how to apply a transformation independently to each element of an array, how to reorganize
an array by rearranging its elements, and how to collect summary information about a subset of an
array’s elements. These techniques are fundamental when working with arrays of many types, not
just with pixel arrays. We will return to examine more sophisticated array processing techniques
in a later chapter.

In addition to the material on arrays, we introduced mechanisms for working with files in general
and with image files in particular. We introduced the JFileChooser which makes it easy to provide
a flexible interface through which a program’s user can select a file for processing. We also saw
how image files could be accessed using SImage constructors. Finally, we saw how JLabels can be
used to display images within a program’s GUI interface.
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