
Chapter 10

Recurring Themes

In Chapter 9, we learned how while loops can be used to command a computer to execute millions
of instructions without having to actually type in millions of instructions. Now that we know how
to make a computer perform millions of operations, we would like to be able to write programs
that process millions of pieces of information. We have seen how to manipulate small quantities
of information in a program. Names have been essential to this process. In order to work with
information, we must first associate a name with the value or object to be manipulated so that
we can write instructions telling the computer to apply methods or operators to the data. It is,
however, hard to imagine writing a program containing millions of instance variable declarations!
There must be another way.

We encounter programs that process large collections of information every day. The book you
are reading contains roughly a million words. The program used to format this book has the ability
to manage all of these words, decide how many can fit on each page, etc. When you go to Google
and search for web pages about a particular topic, the software at Google somehow has to examine
data describing millions of web pages to find the ones of interest to you. When you load a picture
from your new 8 megapixel digital camera into your computer, the computer has to store the 8
million data values that describe the colors of the 8 million dots of color that make up the image
and arrange to display the right colors on your screen.

In this and the following chapter, we will explore two very different ways of manipulating large
collections of information in a program. The technique presented in the following chapter involves
a new feature of the Java language called arrays. The technique presented in this chapter, on the
other hand, is interesting because it does not involve any new language features. It merely involves
using features of Java you already know about in new ways.

The technique we discuss in this chapter is called recursion. Recursion is a technique for defining
new classes and methods. When we define new classes and methods, we usually use the names of
other classes and methods to describe the behavior of the class being defined. For example, the
definition of the very first class we presented, TouchyButton depended on the JButton class and
the definition of the buttonClicked method in that class depended on the add method of the
contentPane. Recursive definitions differ from other examples of method and class definitions we
have seen in one interesting way. In a recursive definition, the name of the method or class being
defined is used as part of the definition.

At first, the idea of defining something in terms of itself may seem silly. It certainly would not
be helpful to look up some word in the dictionary and find a definition that assumed you already
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knew what the word meant:1

recursion (noun)

• A formula that generates the successive terms of a recursion.

In programming, surprisingly, recursive definitions provide a way to describe complex structures
simply and effectively.

10.1 Long Day’s Journey

An ancient proverb explains that

“A journey of a thousand miles begins with a single step.”
Lao-Tzu, Chinese Philosopher (604 BC - 531 BC)

In today’s world, however, a long journey often begins with getting driving instructions from
maps.google.com or some similar site. Figure 10.1 shows an example of the type of information one
can obtain at such sites.

The web page in Figure 10.1 shows the directions requested in several forms. On the right side
of the page, the route is traced on a map showing the starting point and destination. To the left,
the directions are expressed step-by-step in textual form.

1. Head northwest on E 69th St toward 2nd Ave 0.5 mi

2. Head southwest on 5th Ave toward E 68th St 0.5 mi

3. Turn right at Central Park S 0.4 mi

4. Turn left at 7th Ave 0.2 mi

The data required to generate these instructions is an example of a collection. It is a collection
of steps. We will explore how to define a class that can represent such a collection of driving
instructions as our first example of a recursive definition in Java.

In our introduction to loops, we stressed that it is important to know how to perform an
operation once before attempting to write a loop to perform the operation repeatedly. Similarly,
if we want to define a collection of similar objects, we better make sure we know how to represent
a single member of the collection first. Therefore, we will begin by defining a very simple class to
represent a single step from a set of driving directions.

The code for such a Step class is shown in Figure 10.2. It is a very simple class. We use
three pieces of information to describe a step in a set of driving directions. The instance variable

1The definition used as an example here was actually found in the online version of the American Heritage
Dictionary. I must, however, admit to a bit of cheating. The American Heritage Dictionary provides two definitions
for recursion. The entry listed in the text is the second. The first definition provided does not depend on the word
“recursion”, but provides little insight that will be helpful here:

recursion (noun)

• An expression, such as a polynomial, each term of which is determined by application of a formula
to preceding terms.
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Figure 10.1: Driving directions provided by maps.google.com
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// Describe a single step in directions to drive from one location to another

public class Step {
// The distance to drive during this step

private double length;

// A brief description of the road used during this step

private String roadDescription;

// The angle of the turn made at the start of the step.

// Right turns use positive angles, left turns use negative angles

private int turn;

// Create a description of a new step

public Step( int direction, double distance, String road ) {
length = distance;
roadDescription = road;
turn = direction;

}

// Return text that summarize this step

public String toString() {
return sayDirection() + roadDescription + " for " + length + " miles";

}

// Return the length of the step

public double length() { return length; }

// Return the angle of the turn at the beginning of the step

public int direction() { return turn; }

// Return the name of the road used

public String routeName() { return roadDescription; }

// Convert turn angle into short textual description

private String sayDirection() {
if ( turn == 0 ) {

return "continue straight on ";
} else if ( turn < 0 ) {

return "turn left onto ";
} else {

return "turn right onto ";
}

}
}

Figure 10.2: A class to represent a single step in a journey
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length will be associated with the total distance traveled. The instance variable turn holds the
angle of the turn the driver should make at the beginning of the step. If we were only interested
in displaying the instructions as text, we might simply save a String describing the turn, but the
angle provides more information. In particular, it could be used to draw the path to be followed
on a map. Finally, roadDescription will be associated with a String describing the road traveled
during a step like “Main St.” or “5th Avenue”.

The constructor defined with the Step class simply takes the three values that describe a step
and associates them with the appropriate instance variables. For example, the construction

new Step( -90, 0.5, "5th Ave toward E 68th St" )

could be used to create a Step corresponding to the second instruction in the Google Maps results
shown in Figure 10.1.

The Step class definition also includes several methods. The length, direction, and routeName
methods provide access to the three values used to describe the Step. The toString method is
designed to convert a Step into a string that could be displayed as part of a set of driving directions.
For example, if invoked on the Step created by the construction shown above, this method would
return the text

turn left onto 5th Ave toward E 68th St for 0.5 miles

The definition of toString depends heavily on a private method named sayDirection which
converts the turning angle associated with the instance variable turn into an appropriate String.
This method could easily be refined to say things like “head southwest on” or “make a sharp right
onto,” but the simple version shown is sufficient for our purposes.

Given the definition of the Step class, we could represent the four steps from the instructions
shown in Figure 10.1 by declaring the four local variables

Step stepOne = new Step( 0, 0.5, "E 69th St toward 2nd Ave" );
Step stepTwo = new Step( -90, 0.5, "5th Ave toward E 68th St" );
Step stepThree = new Step( 90, 0.4, "Central Park S" );
Step stepFour = new Step( -90, 0.2, "7th Ave" );

This approach, however, is not very flexible. What if we need to manipulate a different set of
instructions that required ten steps? We would need to modify our program by adding six additional
variables. Worse yet, this approach does not scale well to handle really large sets of instructions.
Would if seem reasonable to define 1000 variables to handle the thousand-step journey described
in Lao-Tzu’s proverb? Probably not.

Let’s think a little bit harder about the proverb

“A journey of a thousand miles begins with a single step.”

By telling us how a journey begins, this proverb also suggests something important about how a
journey ends. It might be tempting to parrot Lao-Tzu’s famous words by saying

“A journey of a thousand miles ends with a single step.”

but doing so would fail to capture the full nature of a journey. “Begin” and “end” are opposites.
What is not a beginning is an ending. So a “deeper” way to rephrase Lao-Tzu’s words would be
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class Journey {

// The first step

private Step beginning;

// The rest of the journey

private Journey end;

. . .

Figure 10.3: The first step in defining a Journey class

“A journey of a thousand miles ends with a journey of a thousand miles minus a single
step.”

or more succinctly

“A long journey ends with a long journey.”

The beauty of twisting Lao-Tzu’s words in this way is that it leads to a recursive definition of
a journey:

journey (noun)

• A single step followed by a journey.

In fact, we can construct a recursive class in Java based our somewhat creative interpretation of
Lao-Tzu’s saying about journeys.

In other class definitions we have considered, instance variables have been used to keep track
of the pieces of information that describe the object the new class is designed to represent. The
instance variables in the Step class are nice examples of using instance variables in this way. In our
Journey class, we will similarly define two instance variables to represent the two key parts of the
journey, the beginning and the end. The declarations that will be used for these instance variables
are shown in Figure 10.3. The first of the instance variables refers to a Step, and the other refers
to another Journey. This is how the Journey class becomes recursive. One of its instance variables
is of the same type that the class defines.

We will add other instance variables and methods to complete this class definition shortly, but
to give some sense of how a recursive class actually encodes a description of a collection, we will
first describe an incomplete constructor for our incomplete class and show how it could be used.

The constructor for our Step class simply associated values provided as parameters with the
instance variables in the class. For each instance variable in the Step class, there was a correspond-
ing parameter to the constructor. The constructor for the Journey class will work similarly. Most
of the code for the constructor is shown in Figure 10.4.

Looking at this code, you should quickly recognize an interesting problem. Since the Journey
constructor requires a Journey as a parameter, you cannot construct a Journey unless you already
have constructed a Journey. Which comes first, the chicken or the egg? Isn’t recursion fun?
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public Journey( Step first, Journey rest ) {
beginning = first;
end = rest;
. . .

}

Figure 10.4: A (slightly incomplete) Journey constructor

Figure 10.5: Objects used to build a bigger Journey

We will explain how to resolve this issue in the next section. For now, let us just assume that
somehow we have built a Journey composed of the two last steps in the Google Maps directions
shown in Figure 10.1 and associated it with a local variable named collectedSteps declared as

Journey collectedSteps;

In addition, assume that we have declared two Step variables as

Step stepOne;
Step stepTwo;

and associated them with Steps constructed by executing the assignments

stepOne = new Step( 0, 0.5, "E 69th St toward 2nd Ave" );
stepTwo = new Step( -90, 0.5, "5th Ave toward E 68th St" );

Figure 10.5 represents the assumptions we are making about the variables collectedSteps,
stepOne, and stepTwo. In the figure, each of these variable names is connected by an arrow to a
diagram of the object with which it has been associated. The arrow leading to the value associated
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with collectedSteps points to a cloud-like blob containing an image of the route described by the
last two steps of the instructions shown in Figure 10.1. This amorphous shape is used because we
cannot yet accurately explain how this object would be constructed. The two Step variables, on the
other hand, point to tabular diagrams meant to represent the internal structure of the Step objects
to which they refer. The name of the class Step appears at the top of the diagrams representing
these objects. Each Step has three instance variables: length, turn, and roadDescription. There
is a slot for each of these three variables in each of the tabular diagrams representing a Step. Just
as arrows are used to show the values associated with the local variables, arrows lead from each
entry in the Step objects to the values associated with the corresponding instance variables. For
clarity, we have annotated these values with units like “mi.” and “degrees” even though only the
actual numeric values would be associated with the variables by the computer.

While we cannot yet explain how to construct a Journey from scratch at this point, we can
explain how to construct a Journey given the objects and variables shown in Figure 10.5. In
particular, we could use the (still incomplete) constructor definition shown in Figure 10.4 to create
a three step Journey by evaluating the construction

new Journey( stepTwo, collectedSteps )

This construction forms a new Journey whose “beginning” is step 2 from our Google Map directions
and whose “end” is the third and fourth steps from those instructions. The resulting Journey would
be a bigger collection of steps, but it would still be a collection of steps. Therefore, we could include
this construction in an assignment of the form

collectedSteps = new Journey( stepTwo, collectedSteps );

Just as we represented Steps using tabular diagrams in Figure 10.5, we can use similar diagrams
to represent this new Journey and its relationship to the objects involved. Such a diagram is shown
in Figure 10.6. The arrow showing the object associated with the name collectedSteps no longer
points to the amorphous blob representing the last two steps. Instead, it shows that this name is
associated with a newly constructed Journey object. Since we know the structure of this object, it is
represented using a tabular diagram similar to the Steps. The name Journey appears at the top of
the table representing the new object. It has one entry for each of the instance variables, beginning
and end. The arrows showing the values associated with these instance variables, however, don’t
point to simple numbers or Strings. Instead they point to one of the existing Step objects and
the blob representing the existing Journey.

We can repeat this process to create a longer, four-step Journey representing the entire route
described in our Google Maps example. To do this, we would execute the assignment

collectedSteps = new Journey( stepOne, collectedSteps );

The state of the objects and variables in the computer after this assignment is executed is shown in
Figure 10.7. The name collectedSteps now refers to the most recently constructed Journey. This
Journey’s end instance variable refers to the three-step Journey created earlier, and the three-step
Journey’s end variable in turn refers to the mysteriously created two-step Journey.

Obviously, if we created more Step objects, we could also create additional Journey objects to
represent even longer collections of instructions.

In some sense, none of the Journey objects created in this process contain any information.
They merely refer to information held in the Step objects. We will see, however, that they fill the
key role of providing the links needed to access this information. As a result, structures of this
form are called linked lists.
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Figure 10.6: Relationships between a Journey and its parts

Figure 10.7: Relationships between multiple Journeys and their parts
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10.2 Journeys End

As presented so far, our recursive definition of a journey is not really workable. If every journey is
composed of a first step and another journey, then no journey can ever end! After you take any
step, there must be another journey to complete and it must start with a first step followed by
another journey, and so on. This flaw in our abstract definition of a journey is also reflected in the
fragments of the definition of the Journey class we have presented. It is the fundamental reason
we cannot yet explain how to create a Journey from scratch. Before we can understand how to
start the process of creating a Journey, we have to refine our recursive definition of a journey so
that a journey can end.

In a certain sense, it is obvious when a journey ends. It ends with the last step. That, however,
is not the sense we have in mind. Recall that our goal is to learn how to use recursion to manipulate
large collections of information. In this context, a journey is a collection of steps. A collection of
a million steps is definitely a journey, but is a collection of 10 steps a journey? To know when a
journey ends, we need to know when a collection of steps no longer qualifies as a journey.

If by steps we really mean putting one foot in front of another, a series of 500 steps might be
considered “going for a walk”, but most people would not consider 500 steps a journey. Somewhere
around 5000 steps, most of us might be willing to talk about taking a “hike” rather than a walk,
but even 5000 steps (roughly 3 miles), isn’t what we think of when we talk about a “journey”. On
the other hand, 100,000 steps is enough of a hike, we might be willing to call traveling that far a
journey.

If we can agree on a number like 100,000 as the minimum number of steps that qualify as a
journey, there is a fairly simple way to fix our recursive definition. In English, words often have
two meanings. If you look up such a word in the dictionary, the definition provided will be broken
down into several entries or cases. For example, the definition of the word “case” will include at
least five cases:

case (noun)

1. a container designed to hold or protect something

2. a set of circumstances or conditions, i.e., “is the statement true in all three cases”

3. an instance of a disease, or problem

4. a legal action, esp. one to be decided in a court of law

5. any of the inflected forms of a noun, adjective, or pronoun that express the semantic
relation of the word to other words in the sentence

If a particular case in a word’s definition refers to the word being defined, we say it is a recursive
case. If all of the cases in a word’s definition are recursive, the definition will indeed be circular
(and useless). If at least one of the entries is not recursive, however, the circularity can be broken.
Such a non-recursive components of a recursive definition is called a base case.

To illustrate this, let us give a give a refined, recursive definition of a journey:

journey (noun)

1. A single step followed by a journey.

2. Any collection of 100,000 steps.
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Figure 10.8: Google’s answer to a request for simple driving instructions

Given this definition, it is clear that a trip that involves 100,000 steps is a journey because the
second case in the definition states so explicitly. It is also true that a trip that involves 100,001
steps is a journey since it is composed of a single step followed by 100,000 steps which we already
know is a journey. That is, it fits the first case in the definition. Similarly, now that we know
that a trip involving 100,001 steps is a journey, it is clear that a trip involving 100,002 steps is a
journey. With similar reasoning, we can see that any trip involving more than 99,999 step fits this
definition. On the other hand, a trip that only takes 10 steps is not a journey according to this
definition.

While this definition works, it is not clear everyone would agree with the choice of 100,000 as
the boundary between journeys and hikes. Similarly, it might not be clear how many steps qualify
as a “journey” in the context for which we are designing the Journey class, representing computer-
generated driving directions. Requiring 100,000 steps is clearly too much. The example “journey”
shown in the Google Maps response only consisted of four steps.

We can resolve the question of how few steps Google considers a journey by experimenting
with the site. As shown in Figure 10.8, Google definitely recognizes cases where just a single step
qualifies as a journey. If you get even sillier, however, and ask Google for directions from an address
to the same address, it refuses to accept the idea that this particular journey involves no steps at
all. Instead, as shown in Figure 10.9, it insist that you take one step of distance 0.

Who are we to argue with Google?! We will complete our Journey class on the assumption
that the shortest journey we need to be able to represent is a journey of one step. That is, for our
purposes, the abstract definition of a journey will be
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Figure 10.9: How to get to where you already are

journey (noun)

1. A single step followed by a journey.
2. A collection containing just 1 step.

To realize this abstract definition in concrete Java code, we need to define a class with instance
variables corresponding to the parts of each of the alternatives included in the definition. The
incomplete code in Figure 10.3 already contains the variables beginning and end needed to describe
the step and journey mentioned in alternative 1:

A single step followed by a journey.

We could add an additional variable to keep track of the single step mentioned in alternative 2:

A collection containing just 1 step.

An even simpler approach, however, is to use the beginning variable to describe this step. After
all, if a journey consists of just one step, that step is both its beginning and its end.

We still need to add one new instance variable to enable our Journey class to reflect the two part
definition of a journey. We need a way to determine which of the alternative definitions describes
each Journey we create. Since there are only two choices, we can do this using a boolean variable.
We will add the instance variable declaration

// Does this journey contain exactly one step?

private boolean singleStep;
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Figure 10.10: A complete Journey and its parts

to our class. If the value of this variable is false, then we will assume that Journey contains
more than one Step. In such a Journey both of the other instance variables must be associated
with appropriate objects. If the value of singleStep is true, then we will assume that Journey
contains only one Step. In that case, the variable end will have no useful information associated
with it. It will be null.

With this addition, we can now do away with the cloud used to represent the last two steps
of the Journey we described in the preceding section. Figure 10.10 shows a representation of a
complete collection of Journeys representing the set of driving instructions from Google we first
showed in Figure 10.1.

Given the number of objects represented in this figure, we have used a slightly different notation
to show the values of an object’s instance variables. For instance variable’s of types int, double,
boolean, and String, we have simply written the value of each variable in the same box as its
name rather than connecting the names to the values using arrows. In particular, note that the
value of the new instance variable singleStep is shown in each of the tables representing a Journey
object. As one would expect, as one follows the chain of end arrows through the steps of a journey,
the values associated with singleStep are all false until we reach the final step of the Journey.
Then, in the last Journey, singleStep is true. This is how Journeys end.

10.3 Overload

Now that we have added the singleStep instance variable to the Journey class, we can complete
the process of defining the constructor for the class. If we followed the pattern we used when defining
the constructor for the Step class, the addition of singleStep would lead to the definition of a
constructor that expected three parameter values, one for each instance variable. This constructor
would simply associate the instance variables with the parameter values provided. We could proceed
in this way, but Java supports a better approach.

When defining a class, we can include several constructor definitions as long as each constructor
we define expects a different number of parameters or parameters of different types than any of the
other constructors. In this case, the constructor is said to be overloaded. When asked to evaluate a
construction for an object of a type containing multiple constructor definitions, Java uses the types
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of the actual parameter values provided to determine which of the constructor definitions should
be used.

We will use this feature to provide two constructors for the Journey class, one will be for
Journeys with just one step, the base case, and the other constructor will be for multi-step
Journeys, the recursive case.

The beginning of the text of the Journey class including all of the instance variables and the
definitions of these two constructors is shown in Figure 10.11. The first constructor definition is
very similar to the incomplete definition shown in Figure 10.4. The only change we have made is
to add the assignment

singleStep = false;

This constructor will be used to construct Journeys that represent driving directions that contain
multiple steps. We set singleStep equal to false to reflect this.

The second constructor will be used only if we evaluate a construction in which we provide only
a single Step parameter like

new Journey( aStep )

This version of the constructor associates the instance variable beginning with its parameter value
and sets singleStep equal to true to reflect the fact that there are no other steps in this journey.
It has no value to associate with end. Just to be safe, it explicitly associates end with null, the
name that represents “no value” in Java.

To better illustrate the roles of these constructors, consider how we could construct the complete
collection of objects shown in Figure 10.10. First, we could create the four Steps involved and
associate them with local variable using the initialized declarations

Step stepOne = new Step( 0, 0.5, "E 69th St toward 2nd Ave" );
Step stepTwo = new Step( -90, 0.5, "5th Ave toward E 68th St" );
Step stepThree = new Step( 90, 0.4, "Central Park S" );
Step stepFour = new Step( -90, 0.2, "7th Ave" );

Then, we would create a Journey representing just the last step using the initialized declaration

Journey collectedSteps = new Journey( stepFour );

Because only one parameter is included in the construction used in this statement, Java will use
the second constructor definition shown in Figure 10.11 to process this construction.

Finally, we could execute the sequence of assignments

collectedSteps = new Journey( stepThree, collectedSteps );
collectedSteps = new Journey( stepTwo, collectedSteps );
collectedSteps = new Journey( stepOne, collectedSteps );

to add each of the other steps to the structure associated with the variable collectedSteps. Each
of these assignments would be processed using the first constructor definition.

While these instructions will create the structure shown in Figure 10.11, they do not really
show how recursion makes it easier to manipulate large collections of information. We still need
one variable for each step in the instructions for the Journey we want to represent. Therefore,
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class Journey {

// The first step

private Step beginning;

// The rest of the journey

private Journey end;

// Does this journey contain exactly one step?

private boolean singleStep;

// Construct a multi-step journey given a step to add to an existing journey

public Journey( Step firstStep, Journey remainder ) {
beginning = firstStep;
end = remainder;
singleStep = false;

}

// Construct a single step journey

public Journey( Step onlyStep ) {
beginning = onlyStep;
end = null;
singleStep = true;

}

. . . more to come . . .

}

Figure 10.11: Overloaded constructors for the Journey class
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you may have already guessed that this code is not typical of the instructions used to construct a
collection of linked Journey objects in a real program.

If our Journey class was part of a program that generated driving directions for a site like Google
Maps, it would be used in conjunction with an algorithm that could derive a good route to travel
from one location to another. Such algorithms are called routing algorithms. The presentation of
a routing algorithm is far beyond the scope of this chapter. We will not attempt to explain such
algorithms here. However, to give you a realistic sense of how a Journey would be constructed in
a real program, we will describe a possible interface to a routing algorithm and then show code to
construct a Journey using this interface.

We will assume the existence of two additional classes:

RoadMap — This class will represent the information in a map.
Location — This class will represent a location within the area described by the map.

We will not discuss the details of the implementation of these classes, but we will assume that the
code for the RoadMap class includes the implementation of a routing algorithm. We will also assume
that the class provides one method through which we can request information from the routing
algorithm.

Given two Locations and a RoadMap, we need a method that will use the routing algorithm
to determine the path from one location to the other. We do not want a method that will return
the entire path as a Journey. We want a method that will return one Step of the path at a time.
With this in mind, we will assume that if aMap is a Map object, and startingLoc and endingLoc
are Locations, then an invocation of the form

aMap.getLastStepOfRoute( startingLoc, endingLoc )

will return a Step object describing the last step someone should follow to drive from startingLoc
to endingLoc. This may seem a bit counterintuitive. You might have expected a method that
would return the first step or the Nth step to a destination. The getLastStepOfRoute method,
however, provides just what we will need.

We will also assume the existence of two methods that connect the Location class with our
Step class. Our Step class provides directions that would take a person from one location on the
map to another. Therefore, we will assume that if aStep is an object of the Step class, then the
method invocations

aStep.getStart()
aStep.getEnd()

will return the Location objects describing the locations at either end of a Step.
Given such class and method definitions, the code we might use to construct a Journey repre-

senting the entire route to follow from a given startingLoc and endingLoc is shown in Figure 10.12.
It first creates a single step Journey containing just the last step of the route. Then it executes
a loop that repeatedly creates longer Journeys by adding earlier steps. The most recently added
step is always associated with the name currentStep. Therefore, the loop terminates when the
starting position of currentStep equals the starting location for the complete route.

Note that this code can handle a journey of as few or as many steps as necessary. Regardless
of the number of Steps included in the Journey created by the loop, only the single Step variable
currentStep is required within the code for the loop. When the loop is complete, each Step
returned by the routing algorithm is associated with the name beginning in one of the list of
Journey objects created.
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// Create a Journey containing just the last step

Step currentStep = aMap.getLastStepOfRoute( startingLoc, endingLoc );
Journey completeRoute = new Journey( currentStep );

// The variable intermediateLoc will always refer to the

// current starting point of completeRoute

Location intermediateLoc = currentStep.getStart();

// Repeatedly add earlier steps until reaching the starting position

while ( ! startingLoc.equals( intermediateLoc ) ) {

currentStep = aMap.getLastStepOfRoute( startingLoc, intermediateLoc );
completeRoute = new Journey( currentStep, completeRoute );
intermediateLoc = currentStep.getStart();

}

Figure 10.12: Using the Journey class in a realistic algorithm

10.4 Recurring Methodically

Our Journey class now has all the instance variables and constructors it needs, but it does not
have any methods. Without methods, all we can do with Journeys is construct them and draw
lovely diagrams to depict them like Figure 10.10. To make the class more useful, we need to add a
few method definitions.

Our Step class included a toString method. It would be helpful to have a similar method for
the Journey class. The toString method of the Journey class would create a multi-line String
by concatenating together the Strings produced by applying toString to each of the Steps in
the Journey, placing a newline after the text that describes each step. Such a method would
make it easy to display the instructions represented by a Journey in a JTextArea or in some other
human-readable form.

Since the value returned by applying the toString method to a Journey will usually include
multiple lines, you might expect the body of the method to contain a loop. In fact, no loop will
be required. Instead, the repetitive behavior the method exhibits will result from the fact that the
method, like the class in which it is defined, will be recursive. Within the body of the toString
method, we will invoke toString on another Journey object.

10.4.1 Case by Case

The defintion of a recursive method frequently includes an if statement that reflects the different
cases used in the definition of the recursive class in which the method is defined. For each case in
the class definition, there will be a branch in this if statement. The branches corresponding to
recursive cases will invoke the method recursively. The branches corresponding to non-recursive
cases will return without making any recursive invocations. The definition of our Journey class had
two cases: the recursive case for journeys containing several steps and the base case for journeys
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public String toString() {
if ( singleStep ) {

... Statements to handle single- Step Journeys (the base case) ...
} else {

... Statements to handle multi- Step Journeys ...
}

}

Figure 10.13: Basic structure for a Journey toString method

containing just one step. As a result, the body of our toString method will have the structure
shown in Figure 10.13

The code to handle a single step Journey is quite simple. The method should just return the
text produced by applying toString to that single Step and appending a newline to the result.
That is, the code in the first branch of the if statement will be

return beginning.toString() + "\n";

The code to handle multiple step Journeys is also quite concise and quite simple (once you get
used to how recursion works). The String returned to describe an entire Journey must start with
a line describing its first step. This line is produced by the same expression used in the base case:

beginning.toString() + "\n"

The line describing the first step should be followed by a sequence of lines describing all of the
other steps. All of these other steps are represented by the Journey associated with the instance
variable end. We can therefore obtain the rest of the String we need by invoking toString
recursively on end.

One of the tricky things about describing a recursive method is making it very clear exactly
which object of the recursive type is being used at each step. We are writing a method that will
be applied to a Journey object. Within that method, we will work with another Journey object.
This second Journey has a name, end. The original object really does not have a name. We will
need a way to talk about it in the following paragraphs. We will do this by referring to it as the
“original Journey” or the “original object.”

When the toString method is applied to end, it should return a sequence of lines describing
all of the steps in the Journey named end. That is, it should return a String describing all but
the first step of the original Journey. Therefore, the expression

end.toString()

describes the String that should follow the line describing the first step of the original Journey.
Putting this together with the line describing the first step will give us a complete description of the
original Journey. As a result, we can complete the code in Figure 10.13 by placing the instruction

return beginning.toString() + "\n" + end.toString();

in the second branch of the if statement.2 The complete code for toString as it would appear in
the context of the definition of the Journey class is shown in Figure 10.14.

2In fact, if we want to be even more concise, we can use the statement
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class Journey {

// The first step

private Step beginning;

// The rest of the journey

private Journey end;

// Does this journey contain exactly one step?

private boolean singleStep;

. . .

// Constructor code has been omitted here to save space.

// The missing code can be found in Figure 10.11

. . .

// Return a string describing the journey

public String toString() {
if ( singleStep ) {

return beginning.toString() + "\n";
} else {

return beginning.toString() + "\n" + end.toString();
}

}

. . . more to come . . .

}

Figure 10.14: The recursive definition of the Journey toString method
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Note that using the expression beginning.toString() in our toString method does not make
the method recursive. At first, it might seem like it does. We are using a method named toString
within the definition of toString. When we use a method name, however, Java determines how to
interpret the method name by look at the type of the object to which the method is being applied.
In this case, it looks at the type of the name beginning that appears before the method name.
Since beginning is a Step, Java realizes that the toString method we are using is the toString
method of the Step class. The method we are defining is the toString method of the Journey
class. These are two different methods. Therefore, this invocation alone does not make the method
recursive. It is the invocation of end.toString() that makes the definition recursive. Since end
refers to another Journey, Java interprets this use of the name toString as a reference to the
method being defined.

10.4.2 Understanding Recursive Methods

When trying to understand a recursive method, whether you are writing it yourself or trying to
figure out how someone else’s method works, there are several key steps you should take:

1. identify the cases involved, distinguishing base cases from recursive cases,

2. ensure that the definition is recursive but not circular by verifying that all recursive invoca-
tions involve “simpler cases”, and

3. verify the correctness of the code for each case while assuming that all recursive invocations
will work correctly.

As we have explained in the description of the toString method, the cases that will be included
in a recursive method often parallel the cases included in the recursive class with which the method
is associated. We will, however, see that additional cases are sometimes necessary.

There is a danger when we write a recursive method that one recursive invocation will lead to
another in a cycle that will never terminate. The result would be similar to writing a loop that
never stopped executing.

To ensure that a recursive method eventually stops, the programmer should make sure that
the objects involved in all recursive invocations are somehow simpler than the original object. In
the case of our recursive toString method, the Journey associated with the name end is simpler
than the original Journey in that it is shorter. It contains one less step. In general, if we invoke
a method recursively, the object used in the recursive invocation must be “simpler” by somehow
being closer to one of the base cases of the recursive method. This is how we ensure the method
will eventually stop. Every recursive invocation gets closer to a base case. Therefore, we know
that our repeated recursive invocations will eventually lead to base cases. The base cases will stop
because they do not make any recursive invocations.

Even if one believes a recursive method will stop, it may still not be obvious that it will work
as desired. The correct way to write a recursive method is to assume the method will work on
any object that is “simpler” than the original object. Then, for each case in the definition of the

return beginning + "\n" + end;

because Java automatically applies the toString method to any object that is not a String when that object is used
as an argument to the concatenation operator (“+”). For now, however, we will leave the toStrings in our statement
to make the recursion in the definition explicit.
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recursive class, figure out how to calculate the correct result to return using the results of recursive
invocations on simpler objects as needed. As a result, the correct way to convince yourself that a
recursive method is correct if by checking the code written to handle each of the cases under the
assumption that all recursive invocations will work correctly.

How can we assume our method definition will work if we have not even finished writing it? To
many people, an argument that a method will work that is based on the assumption that it will
work (on simpler objects) seems vacuous. Surprisingly, even if we make this strong assumption, it
will still be not be possible to conclude that an incorrect method is incorrect.

As a simple example of this, suppose we replaced the instruction

return beginning.toString() + "\n" + end.toString();

in our recursive toString method with

return beginning.toString() + end.toString();

While similar to the original definition, this method would no longer work as expected. It would
concatenate together all the lines of instructions as desired, but it would not place any new line
characters between the steps so that they would all appear together as one long line of text.

Suppose, however, that we did not notice this mistake and tried to verify the correctness of
the alternate version of the code by assuming that the invocation end.toString() would work
correctly. That is, suppose that we assumed that the recursive invocation would return a sequence
of separate lines describing the steps in a Journey. Even is we make this incorrect assumption
about the recursive invocations we will still realize that the new method will not work correctly if
we examine its code carefully. Looking at the code in the recursive branch of the if statement, it
is clear the first newline will be missing. The assumption that the recursive calls will work is not
sufficient to hide the flaw in the method. This will always be the case. If you can correctly argue
that a recursive works by assuming that all the recursive calls it makes work correctly, then the
method must indeed work as expected.

10.4.3 Blow by Blow

At first, most programmers find it necessary to work through the sequence of steps involved in the
complete processing of a recursive invocation before they can really grasp how such methods work.
With this in mind, we will carefully step through the process that would occur while a computer
was evaluating the invocation collectedSteps.toString() which applies our toString method
to the structure discussed as an example in Section 10.3.

Warning! We do not recommend doing this every time you write or need to understand a
recursive method. Tracing through the steps of the execution of a recursive method can be quite
tedious. Once you get comfortable with how recursion works, it is best to understand a recursive
method by thinking about its base cases and recursive cases as explained in the previous section.
In particular, if you become confident you understand how the recursive toString method works
before completing this section, feel free to skip ahead to the next section.

As we examine the process of applying toString recursively, it will be important to have a
way to clearly identify each of the objects involved. With this in mind, we will assume that the
Journey to which toString is applied is created slightly differently than we did in Section 10.3.
We will still assume that the process begins with the creation of the four Step objects

279



Figure 10.15: A Journey with names for all of its parts

Step stepOne = new Step( 0, 0.5, "E 69th St toward 2nd Ave" );
Step stepTwo = new Step( -90, 0.5, "5th Ave toward E 68th St" );
Step stepThree = new Step( 90, 0.4, "Central Park S" );
Step stepFour = new Step( -90, 0.2, "7th Ave" );

Now, however, we will assume that the Journey objects are created using the code

Journey journey1 = new Journey( stepFour );
Journey journey2 = new Journey( stepThree, journey1 );
Journey journey3 = new Journey( stepTwo, journey2 );
Journey journey4 = new Journey( stepOne, journey3 );
Journey collectedSteps = journey4;

This code creates exactly the same structure as the code in Section 10.3, but it associates a distinct
name with each part of the structure. The structure and the names associated with each component
are shown in Figure 10.15. We will use the names journey1, journey2, journey3, and journey4 to
unambiguously identify the objects being manipulated at each step in the execution of the recursive
method.

Having distinct names for each of the objects involved will be helpful because as we trace
through the execution of this recursive method invocation we will see that certain names refer to
different objects in different contexts. For example, the condition in the if statement that forms
the body of the toString method of the Journey class checks whether the value associated with
the name singleStep is true or false. Looking at Figure 10.15 we can see that singleStep is
associated with values in all four of the Journey objects that will be involved in our example. In
three of the objects, it is associated with false and in one it is associated with true. In order to
know which branch of this if statement will be executed, we have to know which of the four values
associated with singleStep should be used.
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When singleStep or any other instance variable is referenced within a method, the computer
uses the value associated with the variable within the object identified in the invocation of the
method. In the invocation

collectedSteps.toString()

toString is being applied to the object associated with the names collectedSteps and journey4.
Therefore, while executing the steps of the method, the values associated with instance variable
are determined by the values in journey4. Within this object, singleStep is false. On the other
hand, if we were considering the invocation journey1.toString(), then the values associated
with instance variables would be determined by the values in the object named journey1. In this
situation, the value associated with singleStep is true.

One final issue that complicates the description of the execution of a recursive method is that fact
that when a recursive invocation is encountered, the computer begins to execute the statements in
the method again, even though it hasn’t finished its first (or nth) attempt to execute the statements
in the method. When a recursive invocation is encountered, the ongoing execution of the recursive
method is suspended. It cannot complete until all the steps of the recursive invocation are finished
and the result of the recursive invocation are available. As we step through the complete execution
process, it is important to remember which executions of the method are suspended pending the
results of recursive invocations. We will use a simple formatting trick to help your memory. The
entire description of any recursive invocation will be indented relative to the text describing the
execution that is awaiting its completion and result. To make this use of indentation as clear as
possible, we will start the description of the execution process on a fresh page.
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The first thing a computer must do to evaluate

collectedSteps.toString()

is determine which branch of the if statement in the toString method to execute. It does this by
determining the value of singleStep within the object named collectedSteps. Since singleStep
is false in this object, the computer will execute the second branch of the if statement:

return beginning.toString() + "\n" + end.toString();

To do this, the computer must first evaluate the expression

beginning.toString() + "\n"

by appending a newline to whatever is produced by applying toString to beginning. Looking
at Figure 10.15, we can see that within collectedSteps, beginning is associated with stepOne.
Applying toString to beginning will therefore produce

continue straight on E 69th St toward 2nd Ave for 0.5 miles

Next the computer must evaluate end.toString(). Within collectedSteps, the name end is
associated with journey3. Therefore, this invocation is equivalent to journey3.toString(). This
is a recursive invocation, so we will indent the description of its execution.

The computer begins executing journey3.toString() by examining the value of singleStep
within journey3. In this context, singleStep is false, so the computer will again ex-
ecute the second, recursive branch of the if statement. Within journey3, the name
beginning refers to the object stepTwo, so the application of toString to beginning
will return

turn left onto 5th Ave toward E 68th St for 0.5 miles

The computer will next evaluate the invocation end.toString(). Within journey3, the
name end refers to journey2. This invocation is therefore equivalent to journey2.toString().
It is recursive, so its description deserves more indentation.

Within journey2, singleStep has the value false. Therefore, the computer
will again choose to execute the recursive branch of the if statement. Within
journey2, beginning is associated with stepThree and therefore applying
toString will produce the text

turn right onto Central Park S for 0.4 miles

Next, the computer applies toString to end (which refers to journey1 in
this context). This is a recursive invocation requiring even more indentation.

Within journey1, singleStep is true. Instead of executing the
second branch of the if statement again, the computer finally get to
execute the first branch

return beginning.toString() + "\n";

This does not require any recursive calls. The computer simply ap-
plies toString to stepFour, the object associated with the name
beginning within journey1. This returns
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turn left onto 7th Ave for 0.2 miles

The computer sticks a newline on the end of this text and returns
it as the result of the recursive invocation of toString. This brings
the computer back to...

... its third attempt to execute the recursive branch of the if statement:

return beginning.toString() + "\n" + end.toString();

This instruction was being executed to determine the value that should be
produce when toString was applied to journey2. It had already determined
the value produced by beginning.toString(). Now that the value of the
recursive invocation is available it can concatenate the two Strings together
and return

turn right onto Central Park S for 0.4 miles
turn left onto 7th Ave for 0.2 miles

as its result. This result gets returned to the point where ...

... the computer was making its second attempt to execute recursive branch of the if
statement. This was within the invocation of toString on the object journey3. The
invocation of toString to beginning in this context had returned

turn left onto 5th Ave toward E 68th St for 0.5 miles

By concatenating together this line, a newline, and the two lines returned by the re-
cursive invocation of toString, the computer realizes that this invocation of toString
should return

turn left onto 5th Ave toward E 68th St for 0.5 miles
turn right onto Central Park S for 0.4 miles
turn left onto 7th Ave for 0.2 miles

to the point where ...

... the computer was making its first attempt to execute the recursive branch of the if state-
ment. This was within the original application of toString to journey4 through the name
collectedSteps. Here, the application of toString to beginning had produced

continue straight on E 69th St toward 2nd Ave for 0.5 miles

Therefore, the computer will put this line together with the three lines produced by the recursive
call and produce

continue straight on E 69th St toward 2nd Ave for 0.5 miles
turn left onto 5th Ave toward E 68th St for 0.5 miles
turn right onto Central Park S for 0.4 miles
turn left onto 7th Ave for 0.2 miles

as the final result.
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10.4.4 Summing Up

One must see several example of a new programming technique in order to recognize important
patterns. Therefore, before moving onto another topic, we would like to present the definition of
another recursive method similar to the toString method.

Given a Journey, one piece of information that can be important is the total length of the trip.
This information is certainly displayed by sites that provide driving directions like maps.google.com
and www.mapquest.com. We would like to add the definition of a length method for our Journey
class that returns the total length of a journey in miles.

Again, the structure of the method will reflect the two categories of Journeys we construct —
multi-step Journeys and single-step Journeys. We will write an if statement with one branch for
each of these cases.

The Step class defined in Figure 10.2 includes a length method that returns the length of a
single Step. This will make the code for the base case in the length method for the Journey class
very simple. It will just return the length of the Journey’s single step.

The code for the recursive case in the length method will be based on the fact that the total
length of a journey is the length of the first step plus the length of all of the other steps. We will
use a recursive invocation to determine the length of the end of a Journey and then just add this
to the length of the first step.

Code for a length method based on these observations is shown in Figure 10.16.

public double length() {
if ( singleStep ) {

return beginning.length();
} else {

return beginning.length() + end.length();
}

}

Figure 10.16: Definition of a length method for the Journey class

10.5 Lovely spam! Wonderful spam!

We are now ready to move on to a new example that will allow us to explore additional aspects of
recursive definitions. In this example, we will again define a class to manage a list, but instead of
being a list of Steps, it will be a list of Strings. The features of this class will be motivated by an
annoyance we can all relate to, the proliferation of unwanted email messages known as “spam”.

Much to the annoyance of the Hormel Foods Corporation3, the term spam is now used to describe
unwanted emails offering things like stock tips you cannot trust, herbal remedies guaranteed to
enlarge body parts you may or may not have, prescription drugs you don’t have a prescription
for, and approvals for loan applications you never submitted. Many email programs now contain

3Before people starting calling unwanted email spam, the name was (and actually still is) associated with a
canned meat product produced by Hormel. If you have never had the pleasure of eating Spam, you should visit
http://www.spam.com or at least read through the text of Monty Python’s skit about the joys of eating Spam
(http://www.detritus.org/spam/skit.html).
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Figure 10.17: Interface for a simple mail client

features to identify messages that are spam. These features make it possible to either automatically
delete spam messages or to at least hide them from the user temporarily. If your email client is
doing a very good job of recognizing spam, you might not even be aware of the vast amount of
electronic junk mail that is sent your way every day. If so, look for a way to display the “unwanted
mail” or “trash” folder on your email client. You might be surprised. We will consider aspects of
how such a spam control mechanism could be incorporated in an email client.

Commercial email clients depend on sophisticated algorithms to automatically identify messages
as spam. We will take a much simpler approach. Our program will allow its user to enter a list of
words or phrases like “enlargement”, “online pharmacy”, and “loan application” that are likely to
appear in spam messages. The program will then hide all messages containing phrases in this list
from the user.

Samples of the interface we have in mind are shown in Figures 10.17 through 10.20. The
program provides fields where the user can enter account information and buttons that can be used
to log in or out of the email server. Once the user logs into an account, the program will display
summaries of the available messages in a pop-up menu as shown in Figure 10.18. Initially, this
menu will display all messages available, probably including lots of unwanted messages as shown
in the figure.4

Below the area in which messages are displayed, there are components that allow the user to
control the program’s ability to filter spam. The user can enter a phrase that should be used to

4Alas, I did not have to “fake” the menu shown to make the spam look worse than it really is. The messages
shown are the messages I actually found on my account the morning I created these figures. In fact, the only “faking”
that occurred was to delete a few of the more objectionable messages before capturing the window snapshots.
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Figure 10.18: Looking for a message amidst the spam

identify spam messages and then press the “Enter new spam keyword” button. The program will
then remove all messages containing the phrase from the menu of messages it displays as shown in
Figure 10.19.

The user must enter spam identification terms one at a time, but the user can enter as many
terms as desired by simply repeating this process. The program will display a list of all of the
terms that have been entered and remove messages containing any of these terms from its menu as
shown in Figure 10.20

We will not attempt to present code for this entire program here. Our goal will be to explore
the design of one class that could be used in such a program, a recursive class named BlackList
that could hold the collection of spam identification terms entered by the user. This class should
provide a method named looksLikeSpam. The looksLikeSpam method will take the text of an
email message as a parameter and return true if that text contains any of the phrases in the
BlackList. The program will use this method to decide which messages to include in the menu
used to select a message to display.

10.6 Nothing Really Matters

The first interesting aspect of the definition of the BlackList class is its base case. For the Journey
class, the base case was a list containing just a single step. If we took a similar approach here, the
base case for the BlackList class would be a list containing just a single String. Such a list could
be used to represent the list of spam identification terms shown in Figure 10.19.
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Figure 10.19: Message list filtered using a single spam identification term

Figure 10.20: Message list filtered using a list of spam identification terms

287



For this program, however, we also need to be able to represent the list of spam identification
terms shown in Figure 10.18. If you have not found the list of terms shown in Figure 10.18, look
harder. There it is! Right under the email message displayed and to the right of the words “Spam
Identification Terms” you will find a list of 0 spam identification terms.

At first, this may seem like an odd idea. It seems perfectly reasonable to think of 10 phrases
as a “list” of phrases. On the other hand, getting to the point where we think of a single item as
a list or collection, as we did with the Journey class, is a bit of a stretch. Now, we are asking you
to think of a no phrases at all as a collection!

On the other hand, your experience with programming and mathematics should prepare you
for the fact that sometimes it is very important to be able to explicitly talk about nothing. The
number 0 is very important in mathematics. While 0 in some sense means nothing, the 0’s in the
number 100,001 convey some very important information. Getting $100,001 is very different from
getting $11. In Java, the empty String ("") is very important. The empty String enables us to
distinguish a String that contains nothing from no String at all. The latter is represented by
the value null. If the String variable s is associated with the empty String, then s.length()
produces 0. On the other hand, if no value has been associated with s or it has been explicitly set
to null, then evaluating s.length() will lead to an error, producing a NullPointerException
message.

Similarly, in many programs it is very helpful to have a class that can explicitly represent a
collection that contains nothing. In particular, in our email program, such a collection will be
the initial value associated with the variable used to keep track of our spam identification list.
Accordingly, our Java definition for the BlackList class is based on the abstract definition:

BlackList (noun)

1. A single spam identification phrase followed by a BlackList.
2. Nothing at all.

This change in our base case requires only slight changes in the basic structure of the BlackList
class compared to the Journey class. For the recursive case in the definition, we will still need two
instance variables, one to refer to a single member of the collection and the other to refer recursively
to the rest of the collection. We can also still use a boolean to distinguish the base case from the
recursive case. Naming this boolean singleStep, however, would clearly be inappropriate. We will
name it empty instead. The only other major difference is that instead of a constructor that takes
one item and constructs a collection of size one, we need a constructor that takes no parameters and
creates an empty collection or empty list. Based on these observations, the code for the instance
variable and constructor definitions for the BlackList class are shown in Figure 10.21

Now, let us consider how to write the looksLikeSpam method that will enable a program to
use a BlackList to filter spam. Recursive methods to process a collection in which the base case
is empty resemble the methods we wrote for our Journey class in many ways. The body of such
a method will typically have an if statement that distinguishes the base case from the recursive
case. For our BlackList class we will do this by checking to see if empty is true. The code for
the base case in such a method is typically very simple since there is no “first element” involved.
For example, if there are no words in the BlackList, then looksLikeSpam should return false
without even looking at the contents of the message.

The recursive case in the looksLikeSpam method will be more complex because the result
produced by looksLikeSpam depends on the contents of the collection in an interesting way. The
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public class BlackList {

// Is this a black list with no terms in it?

private boolean empty;

// The last phrase added to the list

private String badWord;

// The rest of the phrases that belong to the list

private BlackList otherWords;

// Construct an empty black list

public BlackList() {
empty = true;

}

// Construct a black list by adding a new phrase to an existing list

public BlackList( String newWord, BlackList existingList ) {
empty = false;
badWord = newWord;
otherWords = existingList;

}

. . .
}

Figure 10.21: Instance variables and constructors for the BlackList class
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// Check whether a message contains any of the phrases in this black list

public boolean looksLikeSpam( String message ) {
if ( empty ) {

return false;
} else {

if ( message.contains( badWord ) ) {
return true;

} else {
return otherWords.looksLikeSpam( message );

}
}

}

Figure 10.22: A definition of looksLikeSpam emphasizing the cases and sub-cases

toString and length methods we defined for the Journey class always looked at every Step in a
Journey before producing a result. The looksLikeSpam method will not need to do this. If the very
first phrase in a BlackList appears in a message processed by looksLikeSpam, then the method
can (and should) return true without looking at any of the other phrases in the BlackList. This
means there are two sub-cases within the “recursive” case of the method. One case will deal with
situations where the first phrase appears in the message. We will want to return true immediately
in this case. Therefore, the code for this case will not actually be recursive. The other case handles
situations where the first phrase does not appear in the message. In this case, we will use a recursive
call to see if any of the other phrases in the BlackList occur in the message.

We will show two, equivalent versions of the Java code for looksLikeSpam. The first, shown
in Figure 10.22, most closely reflects the approach to the method suggested above. The body of
this method is an if statement that distinguishes between the base case and recursive case of the
BlackList class definition. Within the second branch of the if statement, a nested if is used to
determine whether or not the first phrase in the BlackList appears in the message and return the
appropriate value.

A better approach, however was suggested in Section 5.3.1. There, we explained that in many
cases, the nesting of if statements is really just a way to encode multi-way choices as a collection
of two-way choices. We suggested that in such cases, extraneous curly braces might be deleted and
indentation adjusted to more clearly suggest that a multi-way decision was being made. Applying
that advice to the code in Figure 10.22 yields the code shown in Figure 10.23. This code more
accurately reflects the structure of this method. Although the definition of the class involves only
two cases, one base case and one recursive case, the definition of this method requires three cases,
two of which are base cases and only one of which is recursive.

10.7 Recursive Removal

One useful feature we might want to add to our email client and to the BlackList class is the
ability to remove terms from the spam list. We might discover that after entering some word like
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// Check whether a message contains any of the phrases in this black list

public boolean looksLikeSpam( String message ) {
if ( empty ) {

return false;
} else if ( message.contains( badWord ) ) {

return true;
} else {

return otherWords.looksLikeSpam( message );
}

}

Figure 10.23: A definition of looksLikeSpam making a 3-way choice

“little” that we had seen in many spam messages the program hid not only the spam messages but
also many real messages. In such cases, it would be nice to be able to change your mind and tell
the program to remove “little” or any other word from the list.

Figure 10.24 suggests a way the email client’s interface might be modified to provide this
functionality. Instead of displaying the spam terms the user has entered in a JTextArea, this
version of the program displays them in a menu. The user can remove a term from the list by first
selecting that term in the menu and then pressing the “Remove selected keyword” button.

Of more interest to us is how we would modify the interface of the BlackList class to provide
the ability to remove terms. We will accomplish this by adding a method named remove to the
class definition. The term to be removed will be passed to the method as a parameter. In defining
this method, we will assume that only one copy of any term will appear in a BlackList.

Naming this method remove is a little misleading. It will not actually remove terms from an
existing list. Instead, it will return a different list that is identical to the original except that the
requested term will not appear in the new list.

The structure of the remove method will be similar to the looksLikeSpam method. It will
have two base cases and one recursive case. The first base case handles empty BlackLists. If
remove is invoked on an empty list, there is no work to do. The correct value to return is just an
empty BlackList. We can do this by either creating a new, empty list or returning the original
list. The second base case occurs when the term to be removed is the first term in the original
BlackList. In this case, the method should simply return the rest of the BlackList. Finally, if
the list is not empty but the term to be removed is not the first term in the list, the method must
explicitly create and return a new BlackList composed of the original list’s first element and the
result of recursively removing the desired term from the rest of the original list. The code shown
in Figure 10.25 reflects this structure.

To understand how this method works, consider the diagrams shown in Figures 10.26 and
10.27. These diagrams assume that the BlackList used to represent the items in the menu shown
in Figure 10.24 have been associated with a variable declared as

private BlackList spamPhrases;

Figure 10.26 shows the collection of BlackList objects used to represent the collection of spam
phrases before the remove operation is performed. Note that the order of the items in the linked
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Figure 10.24: Email client providing the ability to add or remove spam terms

// Return a list obtained by removing the requested term from this list

public BlackList remove( String word ) {
if ( empty ) {

return this;
} else if ( word.equals( badWord ) ) {

return otherWords;
} else {

return new BlackList( badWord, otherWords.remove( word ) );
}

}

Figure 10.25: A recursive remove method for the BlackList class
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Figure 10.26: BlackList objects representing list shown in Figure 10.24

list is the opposite of the order in which we assumed the phrases were added to the list (and the
opposite of the order in which they are displayed in the menu). This is because when we “add”
an element by constructing a new BlackList, the new item appears first rather than last in the
structure created.

Figure 10.27 shows how the structure would be changed if the statement

spamPhrases = spamPhrases.remove( "little" );

was used to remove the phrase “little” from the list in response to a user request. In this case,
the computer would execute the final, recursive case in the definition of the remove method three
times to process the entries for “Perfect text”, “medication”, and “spam”. Each time this case in
the method is executed, it creates a new BlackList object that is a copy of the object processed.
Therefore, in Figure 10.27, we show three new objects that are copies of the first three objects in
the original list. The objects that were copies are shown in light gray in the figure below the new
copies.

Figure 10.27: Objects representing spam list after removing “little”

The next recursive invocation would execute the second branch of the if statement. This is
the branch that is executed once the item to be deleted is found. It does not make a copy of the
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object to be deleted or of any other object. Instead, it returns the collection of objects referred
to by otherWords within the object to be deleted. Because the method returns this value to the
preceding recursive invocation, it becomes the value of otherWords in the last object that was
copied. Therefore, in the figure, the otherWords variable within the new object for “spam” refers
to the original object for “bluej”.

Once the invocation of remove is complete, the name spamPhrases will be associated with the
object it returns. Therefore, as shown in Figure 10.27, spamPhrases will now refer to the copy of
the object for “Perfect Text” rather than to the original. Following the arrows representing the
values of otherWords leads us through a list that correctly represents the reduced list of four spam
phrases. Part of this list consists of objects that were part of the original list and part of it consists
of new copies of objects from the original list.

If spamPhrases was the only variable name associated with the original BlackList, then there
will be no name associated with the original object for “Perfect Text” after the remove is complete.
This means that there will no longer be any way for the program to refer to this object or any
of the other three original objects that are not part of the new list. That is why we have shown
these objects in gray in the figure. The Java system will eventually recognize that these BlackList
objects are no longer usable and remove them from the computer’s memory.

10.8 Wrapping Up

In the preceding section, we noted that the processes of removing elements from a BlackList often
involves creating new BlackList objects rather than simply modifying existing objects. Adding
an element to a BlackList is similar. When add an element by using the BlackList constructor
to make a new, bigger BlackList rather than by modifying an existing BlackList. Adding or
removing an item from a BlackList always involves assigning a new value to some BlackList
variable. That is, if we declare

String someWord;
BlackList spamTerms;

then we can add a word to spamTerms by executing the assignment

spamTerms = new BlackList( someWord, spamTerms );

and we can remove the word by executing

spamTerms = spamTerms.remove( someWord );

Recursive structures are one of many ways to define a collection of objects. The JComboBox
class, one of the library classes we have used extensively, also provides the ability to manipulate
collections. The JComboBox handles the addition and removal of entries very differently from our
BlackList class. If we declare

JComboBox menu = new JComboBox();

then we can add an item by executing the invocation

menu.addItem( someWord );
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public void addItem( String word ) {
if ( empty ) {

empty = false;
badWord = word;
otherWords = new BlackList();

} else {
otherWords.addItem( word );

}
}

Figure 10.28: An addItem method for BlackLists

and remove an item using the invocation

menu.removeItem( someWord );

Neither of these are assignment statements. When we add or remove items from JComboBoxes,
we don’t create a new JComboBox or associate a new object with a variable. We simply invoke a
mutator method that changes an existing JComboBox.

The addItem and removeItem methods of the JComboBox have several advantages over the
interface our BlackList class provides for adding and removing elements. It is not uncommon to
write a program in which a single object is shared between two different classes. Suppose we want to
share a BlackList between two classes named A and B. Class A might pass a BlackList associated
with instance variable “x” as a parameter to the constructor of class B. Within its constructor, B
might associate this BlackList with the instance variable “y”. Unfortunately, if B tries to add an
item by executing the statement

y = new BlackList( ..., y );

this addition will not be shared with A. On the other hand, if B could say

y.addItem( ... );

as it might with a JComboBox, the change would be shared with A.
It is possible to define methods like addItem and removeItem as part of a recursively defined

linked list like the BlackList. A possible definition of addItem for the BlackList class is shown
in Figure 10.28. Such methods are more complicated than the simple approaches we used to add
and remove items earlier in this chapter, and, in the case of addItem, less efficient. The addItem
method shown adds new items at the end of a list and looks at every entry in the existing list in
the process. By contrast, the technique of creating a new list with the new item at the start only
takes a single step.

As a result, a common alternate technique used to provide functionality similar to the addItem
and removeItem methods is to “wrap” a recursive collection class definition within a simple non-
recursive class that implements methods like addItem and removeItem using the constructor and
remove method of the underlying recursive class.

The class SpamFilter shown in Figure 10.29 is such a wrapper for the BlackList class. The
SpamFilter class contains only one instance variable that is used to refer to the BlackList it
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// A wrapper for the recursive BlackList class that provides addItem

// and removeItem methods in addition to the essential looksLikeSpam method

public class SpamFilter {

// The underlying recursive collection

private BlackList wordList;

// Create a new filter

public SpamFilter() {
wordList = new BlackList();

}

// Add a phrase to the list of terms used to filter spam

public void addItem( String newWord ) {
wordList = new BlackList( newWord, wordList );

}

// Remove a phrase from the list of terms used to filter spam

public void removeItem( String word ) {
wordList = wordList.remove( word );

}

// Check whether the text of a message contains any of the phrases

// in this black list

public boolean looksLikeSpam( String message ) {
return wordList.looksLikeSpam( message );

}

}

Figure 10.29: SpamFilter: a non-recursive wrapper for the BlackList class
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manages. The addItem and removeItem methods of the class provide the ability to add and
remove items from a collection using an interface similar to that provided by the JComboBox class.
Internally, however, these methods are implemented using the constructor and remove method of
the BlackList class. The goal is simply to hide the constructor and remove method from the rest
of the program. Wherever one might have declared a variable such as

BlackList badWords;

elsewhere in a program, one would now instead say

SpamFilter badWords;

More importantly, wherever one said

badWords = new BlackList( ..., badWords );

one would now instead say

badWords.addItem( ... );

Similarly, all statements of the form

badWords = badWords.remove( ... );

could be replaced by

badWords.removeItem( ... );

Finally, when defining such a wrapper class it is typically desirable to make other aspects of
the interface to the wrapper class identical or at least similar to the underlying recursive class. For
example, the SpamFilter class defines a method named looksLikeSpam that provides the same
interface as the similarly named method of the BlackList class . This method is implemented
by simply invoking the corresponding method of the underlying class. As a result, any statement
containing a condition of the form

badWords.looksLikeSpam( ... )

can remain unchanged if we switch to use a SpamFilter in place of a BlackList.

10.9 Summary

In this chapter, we have explored the application of recursive definitions to manipulate collections
of objects. A definition is said to be recursive if it depends on itself. The most direct way this can
happen is if the name being defined is used within its own definition. This is the form of recursion
we have discussed in this chapter.

We have seen examples of classes which are recursive because they have instance variables whose
types are the same as the type of the class in which they are defined. We have also seen examples
of method definitions which are recursive because the include invocations that apply the method
begin defined. In this chapter, all of the recursive methods have appeared within recursive classes,
although this is not necessary in general.
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A recursive definition must be divided into several cases. If there were only one case in the
definition and it referred to the name being defined then the definition would truly be circular and
therefore unusable. By having several cases, the definition can include some cases called base cases
that do not involve the name being defined and other cases that do refer to the name being defined.

We focused our attention on the use of recursive definitions to represent collections of objects.
In this application, the base case of a class definition is typically either the empty collection or a
collection of some small fixed size. The recursive case is then based on the fact that any collection
can be seen as one item plus another collection that is one smaller than the original.

The structure of recursive methods that manipulate collections typically reflects the base case/recursive
case used in the definition of the class to which the method belongs. Other cases in such definitions
involve the single distinguished item that is set apart from the rest of the collection.

While we have introduced many of the important principles one must understand to use recur-
sion, we have kept our exploration of recursion in this chapter narrowly focused on the manipulation
of collections viewed as lists. As you learn more about programming, you will learn that recursion
can be used in many more ways. For example, instead of using the name of a class directly in its
own definition, we can define one class in terms of a second class that is in turn defined using the
first class. Such collections of classes are said to be mutually recursive. Only when you learn to use
recursion in these more general ways will you fully appreciate the power of this technique.
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