Chapter 4

Digital Transmission

It should be clear by now that translating information into binary is not always simple. The
advantage of making such a translation, however, are enormous. If we know that every form of
information we care to store or transmit can be encoded in binary, we only have to think about how
to store and transmit binary. This ensures that the networks we design will be flexible. When the
Internet was first conceived and constructed, there were no MP3 files. The Internet was initially
used to transmit text and programs but not sound. No redesign or reimplementation was required,
however, to accommodate MP3 or any of the other media that are currently transmitted through the
Internet. Once someone concocts a way to translate information in some medium into binary and
back again to its original form, the Internet is capable of transporting this new form of information.

The uniformity provided by ensuring that the only form of information transmitted is binary
contrasts with the variety of media in which this information is transmitted. Information traveling
through the Internet may flow through telephone cables, cable TV lines, fiber optic transmission
cables or between microwave antennae. Our goal in this chapter is to present the basic techniques
used to transmit information in all these media.

While we will be trying to cover transmission techniques applicable to a variety of media, we will
restrict our attention to understanding how information can be transmitted between a single pair of
computers connected by a direct link. This is not representative of most of the communications that
actually occurs in the Internet. In many cases, the pairs of machines that communicate through the
Internet are not directly connected. The hardware and software that constitute the Internet must
find a pathway between such a pair of machines composed of many direct links between machines
other than the two wishing to communicate. Thus, while communications through the Internet
occurs in more complex ways than we will be discussing in this chapter, such communications
depend on the simple direct links we will discuss.

4.1 Time and Energy

People frequently comment that someone “put a lot of time and energy” into a job well done or
complain that they can’t fulfill someone’s requests because they ran out of “time and energy”.
The cliche “time and energy” also describes the factors most critical to information transmission
through computer networks. All it takes to send a information from one computer to another is a
bit of energy and a good sense of timing.

We have had communication networks far longer than we have had computer networks or

41

computers. The most obvious example is the phone system. Before the phone system, there was
the telegraph system. While the telegraph system was in many ways more primitive than the
phone system, communications through a telegraph has more in common with modern computer
network communications than does the phone system. In fact, examining the techniques used to
send messages through a telegraph can give significant insight into the means used to send binary
signals through modern computer networks.

Physically, the structure of a telegraph link is quite simple. Although telegraph wiring typically
stretches over many miles, it is no more complicated that the wiring connecting your home power
supply to the light and light switch in your room. In a telegraph system, the power supply and
switch are located at one end of a long pair of wires. At the other end, a light or a buzzer or some
similar device is connected to the pair of wires. The switch at the sending end is controlled by a
button that enables the person at the sending end to control the flow of electrical energy to the
light bulb or buzzer. Depressing the button is the same as turning on a light switch. Doing so
allows electrical current to flow from the power source to the bulb or buzzer. Releasing the button
cuts off the flow of energy.

This is enough to grasp the role of the “energy” in our “time and energy” description of network
communications. The switch at the sender’s end of a telegraph allows the sender to determine
when energy flows from the sender’s switch through the telegraph wire to the receiver. The light
or buzzer at the receiving end enables the receiver to determine when energy is flowing. In this
way, information about the sender’s actions are transmitted over a distance to the receiver. All the
receiver needs to know is how to interpret these actions.

The thing that enables the receiver to inter-

pret the sender’s actions in most telegraph sys- |MORSE CODE
tems is the Morse code. Morse code, as you prob- |a «- Joom e S oees
ably already know, is based on using the sender’s |B —s++ K—sm T=
switch to transmit long and short pulses of electric |&~*~* vl lj s

i D= M__ T
current called “dashes” and “dots”. The receiver |, Hee Woe——
distinguishes dots from dashes by observing the |Fess—+ 0--—- K=o
relative duration for which the buzzer buzzes or |[G—=* B B Y —e—=
the light shines. The Morse code associates a par- II'I ::" g _____'_ g ===
ticular sequence of dots and dashes with each let-
ter of the alphabet. For example, the letter “A” is 12 T g e g T
sent by transmitting a dot followed by a dash. A |3 ees—m= 7 ——ase Period ¢—=s—¢—
dash followed by a dot, on the other hand, repre- |4 ssse= 8 ———s Comma — —++——

sents the letter “N”. The chart on the right shows

the combinations of dots and dashes used to transmit each of the letter of the alphabet, the ten
digits and the most common punctuation symbols.

The dots and dashes are where “time” comes into the picture. While it is the transmission of
energy that enables the receiver to tell that the sender has turned on the power, it is by observing
the time that elapses while the power is on that the receiver can distinguish dots from dashes.

When we think of alphabets, we think of written symbols. The symbols of an alphabet, however,
don’t need to be written. In this sense, the dot and dash are two symbols in the alphabet of Morse
code. At first, dot and dash seem to be the only symbols in the Morse alphabet. If this were the
case, then Morse code would be based on a binary alphabet. We could choose dot to represent
zero and dash to represent one and immediately use these two symbols to efficiently transmit any

42

digital data in binary form.

If we look at the use of Morse code more closely, however, we realize that its alphabet contains
more than two symbols. Suppose you are the receiver of a Morse code message composed of the
sequence:

dash dot dash dot dot dash dash or _ . _ . . _ _

Looking in the Morse code table you might notice that the sequence _. _ . represents “C”, that “.
”

7 represents “A” and that “.” represents “T”. From this you might conclude that I had so little
imagination that I could not think of anything better than “CAT” to spell in Morse code. On the

other hand, if you also notice that “. . _” represented the letter “U”, you might conclude that I
actually had enough imagination to decide to spell “TAUT” in Morse code. The problem is that
if you received the sequence _ . _. . _ _you would have no reasonable way to decide (without

additional context) whether I was trying to send you the word “CAT” or “TAUT”.
In actual Morse code, this problem is solved by leaving a little extra space between the end of a

sequence of dots and dashes that encodes one letter and the beginning of the next letter’s sequence.
So, if I wanted to spell “CAT” I would send the pattern:

by first pressing the telegraph switch long enough to send a dash and then pausing long enough to
let you know that I was finished with one letter, T, and about to start another letter before sending
the dot and dash for “A”. Of course, I would have to release the switch for a moment between the
dot and dash for “A”. When doing so, I would have to be careful not to pause too long. If that
pause became too long the receiver would interpret the dot as an E and the dash as another T.

What this example shows is that the periods of time when the sender’s switch is released in
Morse code are just as important as the times when the switch is depressed. A short pause encodes
different information than a long pause just as a dot encodes different information than a dash.
Again, this illustrates the importance of time as a vehicle for encoding information in this system.
It also shows that Morse code depends on an alphabet of at least four symbols: dot, dash, short
pause and long pause. Actually, there is a fifth symbol in the Morse code alphabet. To separate
words, the sender inserts and even longer pause.

4.2 Baseband Binary Encoding

Many modern computer networks transmit information using the same basic capabilities required
by Morse code: the ability to control and detect the flow of energy between the sender and receiver
and the ability to measure time. That is, the symbols in the alphabets used by these systems are
distinguished from one another by detecting whether or not energy is flowing and measuring the
time that elapses between changes in the state of the energy flow. Unlike Morse code, these systems
are designed to use a true binary alphabet, distinguishing only two basic symbols.

43

4.2.1 On-off Keying

Since a binary alphabet needs two symbols and the switch in a telegraph-like communications
system has two states — on and off, there is an obvious way to encode the 0’s and 1’s of binary
in such a system. A natural scheme is to turn the sender’s switch on to send a 1 and off to send
a 0. At first this may make it seem as if the presence or absence of energy flow can carry all the
information and that time is irrelevant. This is not the case.

Consider the difference between sending the messages 10 and 110 using the system just sug-
gested. To send the first message one would simply turn the switch on to send the 1 and then turn
it off to send the 0. Now, to send the second message, one would again turn the switch on to send
the first one. The switch is also supposed to be on to send the second 1. If we turn the switch
off between the first 1 and the second 1, this would be interpreted as a 0. So, the switch must
be left on for the second 1 and then finally turned off for the final 0. In both cases, the actions
performed for the two messages are the same. The switch is turned on and then turned off. The
only difference between the two is that the switch might be left on longer to send two 1’s than to
send a single 1. So, in order to successfully interpret signals in this system, the receiver would have
to measure the time the switch was left on to determine whether this act represented a single 1 or
two 1’s.

In order for the receiver to distinguish a single 1 from a pair of 1’s, the sender and receiver must
agree on a precise amount of time that will be used to send all single symbols. Turning the switch
on for that long will be interpreted as a single 1. Leaving the switch on for twice the agreed upon
time will signal a pair of 1’s. Similarly, if the switch is left off for some period the receiver will
determine whether to interpret that action as a single 0 or multiple 0’s by dividing the length of
the period by the agreed upon duration of a single symbol. Such a system of transmitting binary
information is called On-off keying.

4.2.2 Visualizing Binary Communications

To understand on-off keying it may be helpful to consider a visual representation of the behavior of
such a system. Even if the behavior of on-off keying is quite clear already, becoming familiar with
this visual representation now will make it easier to some of the other transmission techniques we
will discuss later.

The two properties that matter in the on-off keying transmission system are time and energy.
So, to envision its behavior, we can measure the energy passing some point in the system (the
receiver’s end, for example) and plot the measurements as a function of time. For example, the
transmission of the binary sequence “10100110” would be represented by a graph like:

Time

The solid lines are the axes of the graph. Time varies along the horizontal axis, energy flow
along the vertical axis. So the areas where the dotted line is traced right next to the black line

44

represent times when the sender’s switch was off. Places where the dotted line is distinctly above
the horizontal axis represent times when the sender’s switch was on, presumably to transmit a 1.

Note that this graph is general enough to describe many transmission systems other than the
telegraph system we have used to make our discussion concrete. In real computer communication
systems based on sending electrical signals through wires, there are no human operated switches
or buzzers or light bulbs. The flow of electricity through the wires connecting the computers is
controlled by electronically activated switches controlled by the computer itself and the receiver
detects the incoming signal with a sensitive electronic device rather than a light bulb. The flow
of electricity between such computers can still be accurately described by a graph like that shown
above. In many modern computer communications systems, wires and electrical signals are replaced
by fiber optic cable and pulses of light generated by computer controlled lasers or light emitting
diodes. This time, the graph above has to be adapted a bit. Plotting electrical voltage on the
vertical axis will no longer make sense. However, if the vertical axis is simply used to plot a
measure of the arrival of energy in the form of light rather than electricity, the behavior of the
signaling system can still be understood using such a graph.

4.2.3 Protocols

A key term in our explanation of on-off keying is “agree”. The parties at either end of the com-
munication line can only successfully exchange information if they have previously agreed upon the
duration of a single symbol in time. The duration of signals is not the only thing they need to agree
on. Although it may seem natural to turn the switch on for 1 and off to represent 0, one could do
the unnatural thing and use turning the switch on to represent 0 and turning it off for 1. In fact,
there are many computer systems that use this convention. The only way two parties can effectively
communicate using either scheme is if they have agreed which scheme will be used ahead of time.
This isn’t a fact that is peculiar to electronic communications. All human communications depends
on the assumption that we at least more or less agree on many things like what the words we use
mean. The alternative, which often does result from lack of agreement in human communications,
is confusion.

Speaking of confusion, one major source of confusion in human communication is jargon, “the
specialized or technical language of a trade, profession, or similar group”. Computer networking
experts as a group are particularly fond of jargon. In fact, one of the things that they have made up
their own terminology for is this very notion that successful communications depends on previous
agreement to follow certain conventions. They refer to the conventions or standards followed in a
particular computer communications system as a protocol. When most of us use the term protocol
we are thinking about diplomats. So, the computer network use of the term may cause some
confusion. Just remember that when used in the context of computer communications a protocol
is simply the set of rules two or more computers must abide by in order to successfully exchange
information. That is, a protocol is just a communications standard.

4.2.4 Message Framing

We have seen a simple scheme for sending 1’s and 0’s through a communications link. To make
the system complete, however, we need to decide how to send one more thing — nothing. That
is, we have to decide what should be happening on the link between two computers when neither
machine is sending anything to the other. This is necessary because in most situations information

45

does not flow continuously between two computers. Instead, one computer sends a discrete chunk
of information (an email message, a request for a web page, a login password, etc.) and then pauses
waiting for a reply. The receiving computer has to be able to recognize the beginning and end of
each such message.

To appreciate that this question isn’t trivial, imagine that two computers are connected by a
link on which on-off keying is used to encode binary information. Consider what the receiver should
expect to see on the communications line when no data is being sent. The most obvious answer is
“no incoming energy”. If the computer on the other end is not sending any information, we would
expect it do so by not sending anything at all. It would effectively disconnect itself from the line.
In this case, the signal seen by the receiver when no data is arriving would look like:

Recall that (reading from left to right) the signal pattern:

o

would represent the sequence 1010011. So, the signal seen by the receiver when the sequence
1010011 is sent preceded and followed by an idle link would look like:

L

Unfortunately, this is also the signal the receiver would see if the sequence 01010011 were sent
preceded and followed by an idle link. The only differences between the two sequences “1010011”
and “01010011” is a leading 0. Without additional information, the receiver would have no way to
determine which of these two sequences was the intended message.

Similar problems would arise if we had instead decided to have the sender transmit energy
during idle periods instead of disconnecting. The problem is that if we limit ourselves to using only
the two symbols of the binary alphabet as encoded by the presence or absence of energy flow, there
is no way to distinguish a third possibility: “no message being sent”.

The solution to this problem is to add a convention to the protocols governing communications
on the link dictating how the sender can notify the receiver that an idle period has ended and the
transmission of a message is beginning. One such convention is to have the sender precede each
message with an extra 1 bit. Such an extra bit is used in the protocol called RS-232 which is
widely used on communication lines connecting computers to printers, modems, and other devices
connected to “serial ports.” In this protocol, the extra bit is called a “start bit.”

For example, if a machine wanted to send our favorite message “1010011” using this convention,
it would actually send a series of signals corresponding to the message “11010011”. The receiver
would see the signal pattern:

L

START BIT

46

Knowing that this convention was being used, the receiver would recognize the first signal it
received as a start bit rather than an actual digit of binary data. Accordingly, when determining
the actual contents of the message received it would ignore the start bit yielding “1010011” as
the message contents. On the other hand, if the message being sent were “01010011”, the sender,
after prepending a start bit, would transmit a sequence equivalent to the encoding of the message
“101010011”. The signal received would look like:

IR N

START BIT

Again, the receiver would treat the leading 1 as an indicator of the start of a message rather
than as a data bit and correctly conclude that the data received was “0101011”.

On real communications lines, static occurs and a bit of static on an idle line might be confused
for a start bit. To deal with such issues, the notion of a start bit can be generalized to the notion of
a start sequence or “preamble.” That is, a communications protocol might require that the sender
of a message begin with some fixed sequence of 0’a and 1’s which the receiver would then use to
identify the beginnings of messages. The longer the sequence used, the less likely that static might
be misinterpreted as the beginning of a message.

In case you haven’t noticed, we have a similar problem at the other end of each message. How
does the receiver know when a message has ended? We just stated that the signal pattern above
would be interpreted as “0101011”7, but it could just as easily be interpreted as “01010110” or
“0101011000000”. While the start bit tells the receiver when a message begins, there is no clear
way for the receiver to know when the message has ended. The long period of no incoming energy
after the last “1” could be an idle period or it could be a long series of 0’s.

We can’t fix this problem by adding an extra ‘1’ as a stop bit. There would be no way to
distinguish the 1’s that were part of the message from the 1 that was supposed to serve as the stop
bit. There are techniques similar to the idea of a stop bit that use a reserved bit pattern to signify
the end of a message. We, however, will instead consider two simpler schemes.

The simplest way to enable the receiver to know when a message ends is to make all messages
have the same length. We have mentioned that a unit of 8 binary digits called the byte is widely
used in organizing computer memory systems. So, it might be reasonable to simply state that all
messages sent will consist of a start bit followed by 8 binary digits. In this case, the last signal
shown above:

IR N

START BIT

would indeed be interpreted as “01010011”, since this message corresponds to the variations in
the signal seen in the 8 time periods immediately following the start bit. There is an implicit end
of message marker after the eighth bit.

The RS-232 protocol uses an approach similar to this. In RS-232, however, the implicit end of
message is reinforced with an explicit stop bit. Thus, the message “01010011” would be encoded
as:

47

[N N .

START BIT STOPBIT

The stop bit in this scheme does not provide any new information. It instead provides a form of
redundancy intended for reliability. If the receiver does not find a stop bit at the end of a message
as expected it knows that some form of communication error has occurred (perhaps a bit of static
on an idle line was misinterpreted as a start bit).

The start and stop bits used in RS-232 messages surround the actual contents of messages just
as a frame surrounds a picture. They separate the contents of the message from the idle periods on
a communications link, just as a frame separates a painting from the blank wall that surrounds it.
Even if only a start bit were used in conjunction with the assumption that all messages would be
of 8 bits in length, the combination of the start bit and the implicit end of message mark serve as
a frame. Accordingly, all the techniques discussed in this section are known as framing techniques.
The contents of a message together with whatever other signals are needed to know where it begins
and ends are called a frame.

Of course, one can send messages longer than 8 bits through a serial port that uses RS-232.
When this is done, however, the message must be broken down into a sequence of byte long units
which are then sent as separate frames each including start and stop bits. This is awkward and
inefficient. The start and stop bits increase the total number of bit transmission times required to
send the data by 25%. Accordingly, many other protocols use framing techniques designed to allow
message frames of variable length.

A simple way to support more flexible frame lengths is to encode the frame length as a binary
number at the beginning of the message. First, of course, the sender would have to transmit a start
bit or a pattern of start bits. Next, the sender would transmit the size of the message in binary.
The size could be measured in bits, bytes or any other units. The sender and receiver must, of
course, agree on the units used. So, the choice of units would have to be part of the communications
protocol. In addition, the receiver would need a way to know how may bits of the incoming data
should be interpreted as the encoding of the message length. Therefore, this would also have to be
part of the protocol.

Suppose, for example, that a protocol was designed to use one start bit followed by a 10 bit
length field in which the message length, measured in bits would be encoded. In such a scheme, our
simple message “01010011” would be encoded using the signaling pattern shown below. To make it
a bit easier to interpret, each section of the framed message is shaded with a different background
color.

] [LT 7
MES SAGE MESSAGE
STARTBIT LEMGTH CONTENTS

First, the sender would send a pulse of energy to serve as the start bit.

Over the next 10 time units, the server would transmit the signals needed to encode the number
8, the length of the actual contents of the message, as a sequence of binary digits. In the binary
system, the decimal number 8 is written as 1000. Since the number of digits used to encode the
length is fixed at 10 digits, the encoding of 8 must be extended by adding otherwise useless leading
0’s. If this is unclear, just think about why your odometer reads 00100 when you have only driven

48

a car 100 miles. Written as a 10 digit binary number, 8 becomes 0000001000. The signal with the
light shading and labeled “MESSAGE LENGTH” encodes this binary sequence.

Finally, after the message length, the encoding of the actual message, “01010011”, which we
have seen repeatedly by now, would be transmitted.

Recall that when interpreting such a message the receiver uses the value encoded in the “message
length” portion of the frame to determine how many digits to expect in the “message contents”
portion. If the signal received were instead:

7 LT T T
¢ MES SAGE MES SAGE
STARTEIT LENGTH CONTENTS

the receiver would examine the message length portion of the frame and realize that it was the
binary encoding for the number 10. Accordingly, the receiver would interpret the signals sent in
the 10 time units after the message length as the contents of the frame. Therefore, the receiver
would extract the 10 digit sequence “0101001100” as the contents.

The designers of such a protocol must carefully consider the size and interpretation of the
message length field in such a scheme. These decisions will limit the variations in message size that
are possible. The scheme proposed in our example uses only 10 digits to encode the length. The
largest value that can be encoded in 10 binary digits is 1,023. So, the longest message that could
be sent in this scheme is 1023 binary digits or 128 bytes. This would be too small to hold most
email messages!

4.2.5 Clock Synchronization

In our discussion of telegraph systems and on-off keying, we stressed the dependence of communi-
cation on time for a very good reason. It is a weakness or at least a source of limitations of the
systems. In the case of a telegraph system this is probably fairly clear. If the humans sending and
receiving Morse code are not good at “keeping the beat”, errors may occur.

In “perfect” Morse code, a dash is three times as long as a dot. Also, the duration of the pauses
between dots and dashes should be the same of the duration of a dot while the pauses between
letters should be as long as the dashes. In reality, the actual lengths of dots, dashes and pauses
will vary somewhat, making a perfect three to one ratio a rarity. Normally, a human receiver can
handle these variations by simply interpreting signals that are close to the average dash length as
dashes and those close to dot length as dots. If the sender is quite inexperienced, however, some
dots may be close to twice as long as average and some dashes may be short enough to also be
about twice as long as a dot. In such cases, the receiver may incorrectly interpret the signal being
sent.

The chance of such errors could be easily reduced. If we revised the rules for sending Morse
code to state that dashes should be four times as long as dots instead of only three times as long,
it would become less likely that a sender would be sufficiently inaccurate to confuse the receiver.
Such a change, however, would have an adverse effect on the speed with which messages could be
transmitted. Consider the transmission of the letter “G” which is represented by dash-dash-dot. In
the system actually used, the time take to transmit an “G” would be nine times the time used to
signal a single dot. In the revised system, transmitting a “G” would require eleven times as long as
a single dot. This is an increase of more than 20%. Any other letter whose representation included

49

a dash would also take longer to send. Although the increases in transmission time would vary
from letter to letter, the net effect would be that all Morse code transmissions would take longer.

Of course, if increasing the time to send a dash from three dot lengths to four would slow
transmissions down, decreasing the time used for a dash to two dot lengths would speed up all
transmission. Unfortunately, given the accuracy of human operators, it was not feasible for Morse
code to be based on such short dashes. The chance of errors would simply become too high.
With electronic, computerized transmitters and receivers, one can imagine that it would be feasible
to send Morse code signals with extremely precise timing and to measure incoming signals very
precisely. With such equipment, one might shorten dashes even beyond the length of two dots. A
dash that was equal in length to 1.001 dots might be different enough to be distinguished reliably
from a dot. Such a change would clearly increase the speed with which transmission could occur.
The accuracy of time measurement, however, is limited even in sophisticated electronic devices and
more accuracy usually entails more expense. So, at some point, one would reach a limit where one
could not make the duration of a dash closer to the duration of a dot while providing sufficient
accuracy.

Even though all the symbols used in the on-off keying scheme are of equal duration, its trans-
mission rate is also limited by the accuracy with which time can be practically measured. In this
case, the problem is not the accuracy with which a single signal can be measured, but the degree
to which the sender’s and receiver’s timing can remain synchronized over long periods.

Notice that in our discussion of Morse code, we never specifically stated how long a dot should
be. In fact, it is unnecessary to do so. Within the first few symbols of a Morse code transmission,
the receiver will see a combination of both dots and dashes. By examining these first few signals,
the receiver can determine (at least approximately) the duration the sender is using for dots. The
sender can choose any duration for dots as long as the other symbols are given durations that are
the correct multiples of the duration chosen for dots. In fact, even if the sender gets tired (or
excited) as transmission continues and gradually changes the duration of dots as time goes on, the
receiver should be able to adjust. This is clearly true if the receiver is a human. A human receiver
would probably make the adjustment without even noticing the change was occurring. It is also
possible to build electronic devices capable of such adjustment. In either case, we would say that
the transmission system is self-synchronizing. That is, in such a system it is not necessary to ensure
that the sender and receiver have timers that have been carefully adjusted to run at the same rates.
Instead, based on the contents of the messages they exchange, the sender and receiver can adjust
their measurements of time appropriately.

A system based on on-off keying, on the other hand, is not always able to self-synchronize. First,
the receiver cannot in general determine the time interval being used for each signaling period based
on what arrives from the sender. This might not at first seem obvious. If the arriving signal looks
like:

Adaaur

Time

it might seem reasonable for the receiver to determine the length of time used to transmit a single
digit from the length of the shortest interval between a transition from a state in which energy is

50

flowing to a state in which energy is not flowing. Doing so with the signal shown would lead the
receiver to interpret the signal as 10100110. The problem is that the sender’s might actually have
been using an interval half as long as the receiver would guess using this approach. The sender
might have meant to transmit the message 1100110000111100. That is, each of the units that
appear to be a single binary digit in the diagram might really be intended to represent two distinct
digits with the same value as suggested by the diagram below.

Adaauy

| | | | | L L | | | 1
Time

If the sender and receiver are both told or designed to know the approximate duration used
to transmit a single binary digit, they can sometimes use self-synchronization to overcome slight
inaccuracies. Suppose, for example that the receiver’s timer was running just a bit faster that the
sender’s, In this case, the receiver would notice that the times at which the incoming signal changed
occurred slightly later than expected. The receiver could make appropriate adjustments by slowing
its clock.

The real problem manifests itself when the message being sent involves a long sequence of
identical binary digits. Suppose, for example, that the sender’s clock is running a bit faster than
the receiver’s clock and that the sender transmits a long sequence of 1’s followed by a 0. The
diagram below illustrates what might happen.

Adaaug

Time

The time axis in the diagram is decorated with two sets of tick marks. The tick marks that
appear below the axis show the receiver’s view of the timing in this system. They are spaced in such
a way that each tick mark indicates a point at which the receiver expects the signal representing a
new bit to begin arriving. As such, these points mark the places at which the receiver might expect
a transition to occur. The tick marks above the axis mark the same thing, but from the sender’s
point of view. Their positions are determined by the sender’s clock which is running a bit faster
than the receiver’s. Therefore, the first of the upper tick marks appears a little before the first
lower tick mark, the second upper tick mark appears even farther before the second lower mark
and so on.

The signal being sent in the example is 11111110. Therefore, at the point where the seventh
upper tick mark should appear, we instead see a vertical line indicating that the flow of energy
from the sender to the receiver suddenly stops at this point. This is the first point at which the
sender could try to automatically synchronize its clock with the sender. If it tried, it would notice
that the transition occurred just a little bit after it expected the end of the sixth bit and quite a

o1

while before it expected the end of the seventh bit. Therefore, it would probably conclude that
the transition represented the beginning of the seventh bit. In this case, it would misinterpret the
incoming signal as 1111110. Worse yet, it would also decide that its clock must be running a bit
too fast and adjust by slowing it down a bit, just the opposite of the action needed to correct the
problem!

To make this example work, we constructed our diagram based on the assumption that the rates
of the clocks used by the sender and receiver differed by something in the range of 10%-15%. This is
a bit unrealistic. If the clocks rates differed by a smaller and more realistic percentage, however, we
could still construct an example in which an error would result. All we would need to do is assume
that a much longer sequence of uninterrupted 1’s (or 0’s) was sent before a transition occurred.
The problem is that when such a long sequence with no transitions occurs, any small discrepancy
between the rates at which the sender’s and receiver’s clocks run accumulates. Eventually, the
difference will become bigger than half the time used to send a single bit. Once this point is
reached, confusion is inevitable.

It may, of course, seem silly to worry about such long sequences of 1’'s. Why would any computer
just sit and send another computer lots of 1’s? To see that this is a realistic concern, consider what
happens when when an image is transmitted digitally. In one common scheme for representing
colors in binary, a sequence of 8 bits is used to describe how much of each of three primary colors is
included in the color being described. The result is that each color is described by a sequence of 24
binary digits. The code for white in this scheme is 111111111111111111111111. If an image has a
white background, this background will be divided into many individual pixels each of whose color
is described by such a sequence of 24 1’s. If there are a thousand such pixels (which is a relatively
small background area), this will result in a stream of 32,000 uninterrupted 1’s.

There is another approach to encoding binary that avoids this problem. The scheme is called
Manchester Encoding. The feature required to make a code self-synchronizing is that there must
be frequent transitions in the signal at predictable times. Manchester encoding ensures this by rep-
resenting information in such a way that there will be a transition in the middle of the transmission
of each binary digit. Like on-off keying, Manchester encoding uses a fixed period of time for the
transmission of each binary digit. However, since there has to be a transition in each of these time
slots, 0’s cannot be distinguished from 1’s simply by the presence or absence of the flow of energy
during the period of a bit. Instead, it is the nature of the transition that occurs that is used to
encode the type of digit begin transmitted. A transition from a state where energy is flowing to a
state where no energy is flowing is interpreted as a 0. A transition from no energy flow to energy
flow is interpreted as a 1.

Visual representations of the transitions involved make the nature of the system
clearer. First, consider the diagram at the left which shows a plot of energy flow
versus time during a period when a 0 is being transmitted. During the first half of
the time period devoted to encoding this 0, the sender allows energy to flow to the

| receiver. Then, midway through the period, the sender turns off the flow of energy. It
is this downward transition in the middle of the interval devoted to transmitting a bit
that identifies it as a 0.

To send a 1, on the other hand, the sender would block the flow of energy for the
first half of the interval used to transmit the bit and then allow energy to flow for the
second half of the bit. This pattern is shown in the diagram on the right. Although
they are written in energy flow rather than ink, these two patterns can be seen as the

52

letters of Manchester encoding’s alphabet. By stringing them together, one can encode
any sequence of 0’s and 1’s.

To make this concrete, the diagram below shows how the binary sequence “10100110”, which
we used as an example of on-off keying above, would be encoded using Manchester Encoding.

J LUy L

Interpreting diagrams showing Manchester encodings of signals can be difficult. The problem
is that our eyes tend to focus on the square bumps rather than on the transitions. This makes it
tempting to see the pattern as an example of on-off keying (in which case it might represent the
binary sequence “0110011010010110”). The trick is to remember that there must be a transition
in the middle of each bit time and use this fact to break the sequence up into distinct bit times.
When this is done, the diagram above looks more like:

with the vertical dashed lines indicating the boundaries between bit times. Now, focusing on
just the areas between adjacent dashed lines, one should clearly see the two patterns of energy flow
used to represent 0 and 1, making it easy to associate binary values with each of the patterns as
shown below.

ST A T N s N S N S N S NN 1

Both on-off keying and Manchester encoding are widely used in practice. On-off keying is
more common in systems with relatively slow transmission rates. For example, the energy flowing
through the cable from your computer’s serial port to your printer or modem probably encodes
binary using on-off keying. The maximum transmission rate through a computer’s serial port is
typically in the range of 100,000 bits per second. If your computer is connected to an Ethernet,
however, the signal traveling on that cable uses Manchester Encoding. Ethernet transmission rates
go as high as 1000 million bits per second.

On-off keying and Manchester encoding are just two examples of a large class of encoding
schemes collectively known as baseband transmission techniques. We will say more about this
class once we have introduced examples of schemes that do not belong to it for the purpose of
comparison.

4.3 Multiplexing Transmissions

Our discussion of binary transmission techniques is currently focused on scenarios in which just
one cable connects just one pair of computers. Even such scenarios, however, may involve a little

53

more complexity than expected. The potential for complexity arises from the fact that a single
computer may be asked to perform several independent tasks involving communications at the
same time. Consider a home computer connected to an internet service provider (ISP). The user
of such a computer might use a web browser to request that a remote web page be fetched and
displayed. Given the limited speed of such a connection, it often takes several seconds for all
the data needed to display a web page to arrive. During this time, the user might get bored
and switch to another window or application to download any recently arrived email. If this is
done, the data required to display the web page and the data constituting the user’s email will
somehow both be arriving through the user’s single connection at the same time! It is as if four
people were holding two conversations on a single phone line at the same time. The user’s web
browser is having one of the conversations with some remote web server. At the same time, the
user’s email program is trying to hold a conversation with the ISP’s email server. If the phone
company forced its customers to conduct conversations over phone lines in this way, there would be
many unhappy customers very quickly. Computers somehow manage to conduct such simultaneous,
independent conversations through data transmission lines very frequently. The technique is called
multiplexing. In this section, we will discuss one approach used to realize multiplexing both to
understand how multiplexing is possible and for the insights it will provide to other aspects of
transmission technology.

4.3.1 Time Division Multiplexing

Given that you need to share anything, there is technique you were hopefully taught before you
entered school that can be used to solve the problem — take turns! Jargon, as I suggested earlier,
can be a terrible source of confusion. Giving a new name to a familiar concept is a sure way to
confuse. The term “Time Division Multiplexing”, which is used by “communication professionals”
to describe the subject of this section, is a glaring example of unnecessary jargon. It simply means
taking turns. While Time Division Multiplexing is really no more than taking turns, examining
how a computer does this carefully can clarify several aspects of computer communications.

Network Utilization

In pre-school, sharing doesn’t work very well when several children desperately want to play with
the same toy at the same time. If the teacher is lucky, the students will take turns but they are
unlikely to do so enthusiastically. Instead, each of the children will be unhappy and impatient
when it is someone else’s turn. Sharing works much better with things that the children only
use occasionally than with things they crave constantly. A classroom full of children can share a
bathroom (or two) and they don’t become unhappy or impatient when it is someone else’s turn (with
rare and sometimes disastrous exceptions). Fortunately, in the world of computer communications,
transmission lines frequently fall in the category of things computers use occasionally rather than
the things they crave constantly. Appreciating this will make it easier to understand how time-
division multiplexing works.

Think for a minute about some of the ways your computer uses its communication’s link to
respond to your requests. Imagine that you are running a browser displaying the Yahoo home
page. As you sit there looking for the link to the Yahoo Yellow pages or typing in a search term or
scrolling to see some portion of the page that didn’t fit in your window, your computer is making
no use of its communication’s link at all. Before it could display the page, the computer had to

54

receive a binary description of the page’s contents through its link to the network. Once this is
done, however, the network remains idle while you examine the page’s contents.

Suppose that after a few seconds you find and then click on the link to the Yahoo Yellow pages.
The software running on your machine knows how to get the contents of the page associated with
the link you selected. It must use your machine’s communications link to send a request to the
machine associated with the link from the web page you were examining. The request message will
be quite short. It will basically contain nothing more than the name of the page you requested by
clicking on the link. So, the transmission line will be in use for a small fraction of a second. Then,
your machine will sit back and wait for the binary data that describes the requested page to arrive
as a message from the web server. Once the requested page arrives, the network again becomes
idle while you examine the new page’s contents.

The use of the network by a mail program follows a similar pattern. When you ask the mail
program to see if you have messages, your mail program sends a small message to your mail server
asking it to send summaries of any new mail messages you have received (basically the sender’s
identity and the subject field).! Your computer then waits for one or more messages from the
mail server. Once they arrive, it displays the summaries for you to examine. While you read
the summaries, the computer isn’t using its network connection at all. When you finally pick a
message to read (typically by clicking on the line describing the message), your computer sends
another brief message requesting the contents of the message. It then waits for the arrival of the
requested message and displays it for you to read. Again, while you read the message the network
connection is not in use.

These examples are intended to illustrate two facts about the way typical programs use a
computer networks. First, most of the time, a computer’s network connection is unused. Even
when you are running what you might consider a network intensive program like a web browser,
it spends a relatively small portion of its time using the network because it spends a very large
portion of its time waiting for the slowest component in the system, you. Even when a program
is “using the network” it actually spends a good bit of its time waiting for responses from some
remote machine rather than sending messages. Another program on the same computer could be
using the network connection to send outgoing messages during such periods.

The second important characteristic of network communications illustrated by these examples
is that it is more like a conversation than a monologue (or even two monologues). Rather than
producing a long, continuous stream of binary data for ongoing transmission, most programs use the
network to transmit distinct messages, typically as requests for information from another machine
or in response to such a request. It is as if one computer were talking to another. One asks a
question and the other answers. As a result, the data sent by most programs can easily be broken
down into independent packages for transmission.

These considerations should make it fairly clear why using TDM (time division multiplexing —
i.e. taking turns) to share a single line connecting the computer to the network is a good idea. In
all but rare occasions, when a program wants to use the computer’s network connection it will find
that it is not being used by another program. If it is in use, it is safe to assume that the program
currently using the connection will be done fairly soon. It is probably either sending a request to
some other machine or replying to an earlier request made by another machine. Once it is done, it
will be happy to let another program takes its turn.

!There are actually several ways in which a mail program can interact with a mail server. We will describe just
one common scenario.

95

The Role of the Operating System

While all this is true in theory, it is worth revisiting sharing in the pre-school environment to
appreciate how this is actually done in practice. Pre-school children are not naturally disposed to
taking turns. It is an acquired skill taught and sometime even imposed and enforced by an adult
supervisor. You have probably noticed by now that few computer programs exhibit social skills as
sophisticated as those found in pre-school children. So, it shouldn’t surprise you that sharing does
not come naturally to computer programs either. A good supervisor is required to make it work.

In fact, nothing comes naturally to a computer program. A program is just a long, often
complicated set of instructions telling the computer how to react to user requests and changes in
the state of the computer itself (like a disk being inserted or a message arriving through a network
connection). If two or more programs are to agreeably share a network connection without external
supervision, the instructions that constitute each program must include subsections specifying how
to determine if the network connection is available or in use, how to wait patiently yet check
periodically to see if the connection has become available, how to use the connection when it is
available, how to inform other programs that the connection is being used and how to inform others
when the network connection again becomes available.

Such a set of instructions would confer on the program skills comparable to those exhibited
by (most) human adults when involved in conversation with a large group. As a consequence, the
instructions would have to be fairly complex. Somehow, when involved in a group conversation,
you know when you should listen patiently and when you can politely break in to express yourself.
This is a sophisticated skill. If you doubt that this is a complex skill, just try to write down a brief
but complete description of how it is you actually decide when a speaker has finished expressing a
thought and has no more to say. Such a description can’t be based simply on how long a speaker
pauses (although that is important). You use your understanding of the content of speech to predict
when a speaker is finished. Although humans perform this task without even thinking about it,
it is actually quite complex. The instructions for a program to interact with other programs in a
similar way would also be complicated.

Even among humans, sharing in a conversation doesn’t always work. Occasionally two people
start talking at the same time or someone misjudges and cuts another speaker off. Of course,
discussions among young children involve far more cases where several people are speaking at once
and much less awareness that in such situations anyone should stop talking. As a result, like
other forms of sharing among school children, sharing in conversation is often a supervised process.
Everyone is taught that if they want to speak they should raise their hands and wait quietly until
the teacher calls on them to speak. It is much easier to teach children to take turns in this way.
Similarly, it is easier to write programs that share a communications link if some form of “hand
raising” is possible.

The key to the system of raising hands in elementary school is the presence of the teacher who
decides which student talks next by calling on one. In a computer system, this role is assume by the
operating system. The operating system mediates the sharing of the network and of many other
machine resources by all the programs running on your computer.

An operating system is a very special program. Most programs perform actions almost exclu-
sively in response to the actions of a human user. The user selects a menu item, presses a button
or types in some information and the program responds by following instructions that tell it what
to do in response to the user’s actions. These instructions may result in new information being
displayed on the screen, a document being saved on disk, or a vast variety of other changes in

56

the state of the computer. Operating systems also perform actions in response to user actions.
When you go the the “File” menu and select “New Folder” on a Mac or Windows machine, it is
the operating system that responds by making appropriate modifications in your computer’s disk
memory to create a new subdivision for files.

What makes an operating systems unusual is that it also performs actions in response to requests
from other programs. The operating system manages many of the resources available in your
computer. It manages the connection to the network, which is our focus here, and it also manages
space for files on your computer’s disk, access to your printer and many other things. When a
program wants to send a message through the network or create a new file on the disk, it does not
do it directly. Instead, it asks the operating system.

A good analogy for the interactions between normal, “application” programs and the operating
system might be the interactions between a bank customer and a teller. When you want to take
money out of the bank, you don’t actually walk into the vault or reach into the cash drawer and
do it yourself. Instead, you fill out a withdrawal form or write a check and hand this “request” to
a teller. Similarly, when an application wants to send a network message it effectively fills out a
little form saying what information should go in the message and to whom it should be delivered.
It then passes this request on to the operating system rather than directly giving commands to the
computer’s network interface hardware.

Performing all network operations through the operating system makes it safe and relatively
simple for several programs to share a single network connection. The operating system is the
only program that actually uses the network hardware. All other programs simply make requests
to the operating system when they want to use the network. The operating system can compile
all the requests outstanding and fulfill them one at a time. The other programs simply wait for
their response from the operating system. There is no need to include instructions in each program
telling it how to negotiate with other application programs to determine when it is safe to use the
network hardware. The only interaction required is between the application program that wants
to use the network and the operating system.

There are other good reasons for arranging all network access through the operating system.
When a program actually interacts with a computer’s network interface hardware, the precise
details of the information that must be provided by the program and the steps it must perform
are dependent upon the specific interface product being used. If the network interface components
included in your computer were manufactured by Netgear, then the procedure followed to use it will
be different than the procedure used if it were manufactured by Linksys. If every program that used
the network did so by accessing the network hardware directly, then each such program would have
to include instructions to determine which type of network hardware was available and instructions
to use with each of the many types of network hardware. Instead, because all network access is
mediated by the operating system, only the operating system needs to be capable of identifying
and interacting with the wide variety of network access hardware that might be connected to a
machine. All application programs need to know is how to correctly ask the operating system to
access the network. This makes the construction of application programs much simpler. It also
means that in most cases, only the operating system needs to be upgraded when new network
hardware components become available.

57

Message Addressing

The last two sections provide all the details needed to explain how time division multiplexing handles
outgoing messages, but they leave unconsidered a detail needed to understand how multiplexing
works for incoming messages. If a communications line is being shared by several programs running
on a machine, then a message that arrives at the machine might be intended for any of these
programs. When it arrives, such a message will actually be received by the operating system rather
than any of the application programs, since the operating system is the only program that actually
interacts with the network hardware. So, the question is how can the operating system determine
for which application program the message is intended.

The operating system cannot be expected to determine a message’s intended recipient by ex-
amining (and understanding) the message’s contents. Each application program is likely to choose
is own scheme for encoding the information it sends and receives through the network. If the oper-
ating system had to understand all these encodings, it would have to be updated every time a new
program was installed on the system. A much simpler approach is to arrange for each message to
be plainly addressed to a particular recipient.

In our discussion of the problem of determining when messages begin and end, we introduced
the idea of a message frame. The frame is formed by adding extra information, such as a start bit
or message length field, to the data sent when transmitting a given message. The name “frame” is
based on the analogy that the extra information surrounds the actual message as a frame surrounds
a painting. Another analogy for the role of the extra information added might be to compare the
extra information to an envelope. When using the postal system, we place our message within an
envelope that carries the message through the transportation process. Like the extra bits added to
network messages, the envelope is usually discarded by the individual who receives a letter from
the post office.

If message framing information acts like an envelope then it is natural to think of adding
addresses to this message framing information. To make this possible, someone must select a
scheme for associating addresses with the programs running on each machine. Then, when a
message is sent to a machine, the address of the program intended to receive the message would be
included in the message frame.

We all know that there are rules for writing addresses on envelopes. The parts of the address
are supposed to be written on separate lines. The recipient’s name goes on the top line and the
name of the destination city goes at the bottom. In fact, if you want to know all the rules the US
Postal Service would like you to follow when writing addresses, you can get yourself a copy of their
“Publication 28 - Postal Addressing Standards.” It is only 128 pages long!

Luckily, while there are rules we are supposed to follow when writing addresses, postal employees
are remarkably good at interpreting addresses even if they don’t follow the rules. I'm frequently
amazed that any mail addressed in my barely legible handwriting ever gets delivered. I know of
one friend who once received a letter addresses only with her first name and our town’s name.
Obviously, I live in a small town, but I was still impressed. I suspect that one could get away
with writing the address on the wrong side of the envelope, writing the lines in the wrong order
and many other variations and still have your mail delivered (as long as the postal employees who
handled it were in good moods at the time).

Computers are not as forgiving as postal employees. If a sequence of bits arrives at a computer
through its network connection, there is no reasonable way for the computer to guess which bits
are the address and which are the message. The only way it can find and interpret the address is

58

if the sender and receiver have previously agreed on the format and placement of addresses. So, to
support addresses, the protocols that describe message frames must specify these details.

To make this idea concrete, imagine how we could add an address field to the hypothetical
frame format we suggested when discussing the idea of including a message length in the frame.
Basically, just as we had to decide how many bits to use for the message length, we would have to
decide how many bits to use for the address. In addition, now that we have two sub-sequences of
digits preceding the actual message, we have to decide which goes first. In this case, their placement
doesn’t make much difference, but if we don’t decide one way or another, the computer receiving
a message won’t know where to look for the length or the address. So, we might decide to use a
12 digits address sequence and place if after the length sequence. In this case, we would expect
arriving message frames to have the following basic layout:

Start Length Acldress Message Data-(up ko
Bit (10kit=s) 712 bitsn 1023 bis

This visual representation of the layout of a frame is based on the forms we all have to complete
from time to time that give a fixed number of spaces to fill in with our first name, our last name, etc.
Basically, if this layout were part of the protocol governing communication between two computers,
then each computer would have to use 1 bit time for a start bit, 10 bit times for the length of the
message, and 12 bit times for the address. Since each fields length and position is fixed, the receiver
can easily extract the needed information.

Once the address is extracted by the operating system, it will need a way to associate the address
with a particular program running on its machine. We will consider how this is accomplished in
more detail later.

59

