
Chapter 2

Encoding Text with a Small Alphabet

Given the nature of the Internet, we can break the process of understanding how information is
transmitted into two components. First, we have to figure out how each type of information we
might wish to transmit through the network can be represented using the binary alphabet. Then,
we have to learn how 0’s and 1’s can actually be sent through a wire. We will consider how to
represent information in binary in this and the following chapter. Then, with this understanding
we will look at the process of transmitting binary information in the following chapter.

It is clear that it is possible to transmit information of many forms. Images, sound, and movies
are among the obvious examples. Many Internet protocols, including those used for email and text
messaging, however, rely mainly on the transmission of text messages. To simplify our task, we
will therefore initially limit our attention to discussing how text is encoded in binary.

Even with our attention limited to encoding text, working in binary can be painful. Fortunately,
we can postpone the ordeal of working with binary while grasping most of the principles behind
binary encodings by first considering the problem of how we might encode text using only the ten
digits 0 through 9. Then, we can apply the understanding we gain about such encodings to the
less familiar world of binary.

2.1 Doing without Delimiters

You can easily represent letters from the alphabet using only digits by simply numbering the letters.
For example, the table below shows an obvious way to number the letters of the alphabet:

1. a 11. k 21. u
2. b 12. l 22. v
3. c 13. m 23. w
4. d 14. n 24. x
5. e 15. o 25. y
6. f 16. p 26. z
7. g 17. q
8. h 18. r
9. i 19. s

10. j 20. t

Given this table, we can represent any word by listing the numbers for each of the letters in
order. For example, “bad” could be encoded as “214.” In a scheme like this, the sequences used

11

to represent individual letters are called codewords. That is, “2” is the codeword for b and “18” is
the codeword for r. A sequence of codewords like “214” that is intended to represent a complete
message will be called a coded message.

The simple scheme described by the table above runs into trouble very quickly if we try encoding
something just a bit more complicated like the word “barn”. The coded message derived from our
table for “barn” would be “211814” since b = 2, a = 1, r = 18 and n = 14. Unfortunately, this
is also the coded message for “urn” since u = 21, r = 18 and n = 14. If we were actually using a
scheme like this to send text through a network, the computer (or person) on the other end would
be confused if the coded message “211814” arrived. The problem here is that there is no way for the
receiver to know whether to interpret “21” as a “2” representing “b” followed by a “1” representing
“a” or as the pair “21” representing “u”.

We might think of fixing this by separating codewords that represent distinct letters from
one another with commas so that barn would be represented by “2,1,18,14” and urn would be
represented by “21,18,14”. If we do this, however, we are no longer representing text using just the
10 digits. We are now using an eleventh character in our scheme, the comma. It may not seem
like a big issue to use 11 symbols rather than 10, but remember our ultimate goal is to use the
techniques we explore using the 10 decimal digits to understand encoding schemes based on binary
digits. The whole point of binary is to get down to the smallest useful alphabet, the alphabet with
only two symbols. If one of the two symbols used in that case is a comma, we really only have one
symbol to work with. So, we need to learn to do without commas now!

You might get the clever idea that we can accomplish the purpose of the commas without
actually using an extra symbol by simply leaving spaces between the codewords where the commas
would have appeared. Thus, barn would be represented by “2 1 18 14” and urn would be represented
by “21 18 14”. Alas, this doesn’t really solve the problem. What it does instead is point out that
the space is as significant a symbol as the comma. Although they don’t use up any ink, spaces
definitely convey information. Consider the two sentences:

“I want you to take him a part.”

and

“I want you to take him apart.”

Spaces in text are symbols just like the letters of the alphabet. If we use spaces to separate the
digits as in “21 18 14” we are again using an 11 symbol alphabet rather than a 10 symbol alphabet.

Fortunately, there are approaches that will enable us to tell barn and urn apart without using
anything other than the 10 digits. One simple technique is to fix the number of digits used to
represent letters from the original alphabet. The problem in our original scheme is that some
letters are encoded as a single digit while others require 2 digits. The problem goes away if we use
two digits for every codeword. We can do this by starting the numbering of the alphabet with a
two digit number (i.e., a = 10, b = 11, c = 12, etc.) or even more simply by adding a leading zero
to each single digit number (i.e. a = 01, b = 02, etc.). With this change, barn becomes “02011814”
while urn is represented as “211814”. Thus, by choosing some fixed number of digits to represent
each symbol in the alphabet, we can avoid the need to use any delimiters in our representation
scheme.

12

2.1.1 How Many Digits

If we avoid using delimiters by fixing the number of digits used to represent each symbol of the
alphabet, we have to decide how many digits to use. Clearly, 1 digit would not be enough. It would
only enable us to encode 10 distinct letters. On the other hand, 2 digits seems sufficient. With 2
digits we can encode 100 distinct symbols and there are only 26 symbols in the alphabet.

If we want to use our encoding scheme to represent the contents of real messages, of course, we
will have to be prepared to represent more than the 26 lower case letters. We will certainly have
to handle upper case letters. We could do this by numbering the upper case letter with the next
26 numbers so that A = 27, B = 28 and so on. Then, of course, there are the digits themselves.
If someone typed the number “4” in an e-mail message, we could not just encode it as “4”. First,
our scheme depends on using exactly two digits for each character. So, we have to use a pair of
digits to encode the single character “4”. Moreover, given the encoding rules we have proposed so
far, we could not use “04” to encode “4” because “04” already encodes “d”.

The simplest alternative is to number the digits as we numbered the letters starting with the
first number that hasn’t yet been used for an upper or lower case letter, 53. So, we would represent
0 as “53”, 1 as “54”, 2 as “55” and so on. Of course, we could start over again and re-number the
letters starting at 10 so that we could use “00”, “01”, “02”, ... and “09” for the digits. This might
seem more “natural” to us, but it wouldn’t be superior to the other scheme in any significant way.

Next, we have to worry about punctuation marks that might appear in the text. Things like
commas, quotes, semi-colons and question marks certainly need to be included. Also, just as we
discovered we had to think of spaces as symbols if we tried to use them as delimiters, we better
provide a way to encode the spaces that appear between words in messages.

If it still troubles you to think of the space as a character that is as important as things like
“e”s and periods, think a bit about how an encoding scheme like ours might actually be used in
a computer. When you press a key on your keyboard, the electronic components in the keyboard
have to send some sort of message through the cable connecting the keyboard to the computer
to tell the computer what character was typed. These messages are numbers expressed in binary.
For our purposes, however, we could imagine that they were expressed using the scheme we are
developing. That is, when one typed a “c” on the keyboard, the keyboard might send the sequence
“03” to the computer. Clearly, for such a system to work, the keyboard needs some message it can
send when you press the space bar. Similarly, it needs to send messages informing the computer
when you press the return or tab key. So, in addition to the normally recognized punctuation
marks, any scheme for encoding text in a computer must include encodings for characters like the
space, tab and return.

Looking at the keyboard in front of me I see that the combination of punctuation marks, the
space key, etc. account for about 36 additional symbols. Together, the 52 alphabetic character,
the 10 digits and the punctuation marks account for about 98 characters that need to be encoded.

This should make you nervous.

Recall that if we use 2 decimal digits to encode each symbol, we can encode up to 100 distinct
symbols. At this point, we are already using all the pairs up to about 98. There are only 2 left:
99, and 00. Basically, there isn’t much room left for expansion.

Suppose someone wants to design a new keyboard that provides more characters. For example,
while my keyboard includes the “$”, it does not include the symbol for the British pound, £. It is

13

also missing the section symbol, §, and the copyright symbol, c©. If the new keyboard is to include
more than 2 such additional characters, our code must be revised. If we wanted to be able to encode
more than 100 distinct characters, we would have to use 3 digits for each codeword rather than just
2. We need not change the values of the numbers associated with symbols in our original scheme,
but each character would need to be encoded using three digits. Thus, “a” would be encoded as
“001” rather than as “01”, “b” would be encoded as “002”, and so on. With this scheme, we could
encode up to 1000 distinct characters.

To appreciate the impact of making such a change in a coding scheme, consider again how such
a code would be used. Computer keyboards might use the code to send signals to an attached
computer when a key is pressed. The connection between the keys on the keyboard and the digits
sent will be built into the hardware of the keyboard. If it later became necessary to change the
code, the keyboard would have to be discarded and replaced with a new keyboard designed to use
the new code. Chances are, in fact, that the computer would be similarly dependent on the code
and have to be discarded with the keyboard. Thus, even though we can easily think up many
different codes for keyboard symbols, it isn’t easy to change from one to another. In the real world,
leaving room for expansion may make it possible to extend the code later without requiring costly
hardware replacements.

2.2 Moving from Decimal to Binary

Encoding text in binary is fundamentally the same as encoding text using decimal digits. The
simplest approach is again to picked a fixed number of binary digits to use for every character. It
is still important to choose enough digits to leave room for expansion. The big difference is that
there are only two distinct digits in binary, 0 and 1. As a result, longer codewords are required to
represent each character. While we saw that 3 decimal digits would be sufficient to represent all of
the characters used when writing English text, we will see that 7 or 8 digits are required in binary.

Suppose, for a moment, that we did try to get away with just 2 binary digits. We saw that 2
decimal digits would be enough to encode up to 100 distinct characters. How many characters can 2
binary digits encode? The short answer is not many! If you start writing down all the combinations
of pairs of binary digits you can find, you will run out after writing just four pairs: 00, 11, 01, 10.

Even if you allow yourself to use 3 binary digits, the collection of possibilities doesn’t get much
bigger. In particular, with 3 digits the only combinations are 000, 011, 001, 010, 100, 111, 101, and
110.

Writing down all the possibilities for longer sequences of binary digits would be painful. Luckily,
there is a simple rule at work. There were four 2 digit binary sequences and eight 3 digit binary
sequences. Allowing an extra digit doubled the number of possibilities. If we allowed a 4th digit,
we would find there were again twice as many possibilities giving 16. In general, if we use N binary
digits, we will have enough combinations to represent 2N distinct symbols. Therefore, with 6 binary
digits, we could handle 26 = 64 symbols. This is fewer than the 98 symbols on my keyboard. With
7 binary digits we could handle 27 = 128 symbols. This will handle the 98 symbols found on my
keyboard and leave a reasonable amount of room for expansion. In fact, the code that is actually
used to represent text characters on most computers uses 7 binary digits. This code is called ASCII.

ASCII stands for “American Standard Code for Information Interchange.” It is very much like
the decimal code we described above. The letter “a” is represented as 1100001, which is the binary
form for the decimal number 97. The letter “b” is represented by 1100010, which corresponds to

14

98. The remaining letters are associated with consecutive binary numbers. Capital letters work
similarly with “A” represented by 1000001, the binary equivalent of 65. For those who really want
to know more, a list of ASCII codes can be found in Figure 2.1.

It is common to add one additional digit to the sequences of 7 binary digits used to represent
symbols by the ASCII code. The value of this extra digit is chosen in a way that makes it possible
to detect accidental changes to the sequence of digits that might occur in transmission. This extra
digit is called a parity bit. We will discuss parity bits in more detail in a later chapter. For now,
the main point is that characters encoded in ASCII actually occupy 8 binary digits of computer
memory.

Another widely used code for representing text in binary is called EBCDIC (for Extended
Binary Coded Decimal Interchange Code). It was developed by IBM and used as the standard
code on several series of IBM computers. When IBM mainframes dominated the computing world,
EBCDIC, rather than ASCII, was the most widely used text encoding scheme. EBCDIC differed
from ASCII in many ways. The same sequence of digits that represented “z” in ASCII was used to
encode the colon in EBCDIC. They did, however, use a similar number of binary digits to encode
characters. In EBCDIC each character was encoded using 8 binary digits.

The encoding of text data is quite important in computing and computer networking. It is
important enough that the unit of memory required to encode characters of text in these common
codes is also used as the standard unit for measuring memory. The actual memory of a computer
is composed of millions of binary digits. The term bit is used to refer to a single binary digit. The
hardware of most machines, however is designed so that the smallest unit of memory that can be
easily, independently accessed by a program is a group of 8 bits. Eight bits is enough to hold one
character in either of the most widely used text encoding schemes. Such a group is called a byte.

Before leaving the subject of encoding text using fixed-length binary codewords, we should
mention one other standard for character representation, a relatively new code named Unicode.
All of the examples given above have been embarrassingly ethnocentric. We have explained how to
represent English text, but ignored the fact that many other languages exist, are used widely, and
often use different alphabets. The 128 possible letters provided by ASCII are woefully inadequate
to represent the variety of characters that must be encoded if we are to support everything from
English to Greek to Chinese. Unicode is a text encoding standard designed to embrace all the
world’s alphabets. Rather than using 7 or 8 bits, Unicode represents each character in 16 bits
enabling it to handle up to 65,536 (= 216) distinct symbols. For compatibility sake, the letters
and symbols available using ASCII are encoded in Unicode by simply adding enough zeros to the
left end of the ASCII encoding to get 16 bits.

Exercise 2.2.1 Show the sequence of binary digits used to encode the four characters in the text
2ft. in ASCII. A table of codewords used in the ASCII encoding scheme can be found in Figure 2.1.

Exercise 2.2.2 ASCII is a fixed length, binary code. Each character is a block of eight binary
digits or bits. With 8 bit blocks, one can encode a maximum of 256 different characters. But what
if we allow ourselves three values (say 0, 1, 2) instead of just two? Codes using three symbols are
called ternary codes.

(a) Suppose that we were only interested in encoding the 26 upper case letters of the American
English alphabet. What is the minimum number of digits per block required for a fixed length,
ternary code?

15

Figure 2.1: Table of ASCII codes

16

(b) Suppose we wanted to be able to encode messages containing upper and lower case letters,
digits, and the collection of punctuation marks described above so that the total number of
distinct codewords needed was 98. What is the minimum number of digits per block required
for a fixed length, ternary code for this set of symbols?

(d) In general, how many distinct characters can we encode using a fixed length ternary code with
k digit blocks?

17

