CS 134 Fall 2009

Lab 6

Recursive Revision
Due October 27/28 9PM

This week, we want you to implement yet another POP client. Externally, this program will look quite a lot
like the program you completed for Lab 3. A sample of its interface is shown below. The components at the top
of the program window are identical to those used in Lab 3. There are JTextFields and JButtons used to
log in and out of a POP server and a JTextArea used to display a requested message. The mechanisms
provided to request that a particular message be displayed, however, are quite different.

eocé

Mail Account: tom Password: *==**=

(Disconnect)

From: Jim Teresco <terescoj@cs.williams.edu>
Subject: NEED YOUR HELP!
Date: Thu, 21 Apr 2005 09:28:58 -0400 (EDT)

Dear Kind Sir:

| am your distant cousin from Elbania. | am in great need to your
assistance. The sum of £1,000,000 (one million) will be deposited to
your account. Please help. Your great-great-second-and-a-half-cousin
uncle passed away and you are the closest relative. Click here to

receive your §1,000,000. This is not a hoax.

Kindest regards,
Elbonian Relative

Thu, 21 Apr 2005 | Jim Teresce <terescojfcs. | NEED YOUR HELP! @

" Wed, 20 Apr 2005 | Tom Murtagh <tomfcs.willi | test message L 'y
" wed, 20 Apr 2005 Tom Murtagh <tomfcs.willi test message 2 -

Wed, 20 Apr 2005 Shannon Murtagh <shannon. Subject: G

Thu, 21 Apr 2005 | Lorraine Robinson <lrobin

pr_200!
Thu, 21 Apr 2005 Barbara Lerner <lernerécs
Fri, 9 Sep 2005 tomécortland.cs.williams.
Tue, 13 Sep 2005 tomBcortland.cs.williams.

Graphies Hour
NEED YOUR HELP!
Joke Ly

The program you complete this week will provide a menu that can be used to determine which message will be
displayed. The items in this menu will be summaries of the email messages available in the user’s account.
Each summary will include the date the message was received, the name of the person who sent the message
and the subject field (if any) included with the message. When the user selects an item in this menu, the pro-
gram should display the corresponding email message in its JTextArea.

As a starting point this week, we will provide you with a complete Java program that you can download from
the course website that functions exactly like the program we want you to submit!

What’s the catch?

Well, while we don’t want you to change the way the program behaves externally, we want you to change how
it is implemented internally. In particular, we want you to change it so that it uses recursive structures.

We recognize that this will be a busy week. Among other things, our course midterm is this week. With this in
mind, we have tried to design this lab so that you can focus your attention on the new programming topic we
have just covered in class, recursion, while wasting as little effort as possible on other programming tasks. We
also encourage you to work together in pairs on this week’s lab to make it even easier to complete.

Of course, there is another catch. The deadlines for this week’s lab are earlier than usual. Students in the Mon-
day lab should complete the program by Tuesday at 9PM and students in the Tuesday lab should finish by
Wednesday at 9PM. Guess when we will be holding our midterm review session!

CS 134 Fall 2009

A Quick Tour

The program we will provide you is divided into three classes named POPClient, MailMessage, and POP-
Connection. A complete listing of the code for these classes is attached to this handout. It also contains a
class named TimeTrials that will be used to experimentally measure the efficiency of some of your code.

POPClient

The poPClient class displays the program’s user interface and reacts to user requests. Its constructor creates
the text fields, text area, and buttons included in the interface and associates them with instance variables. It
includes the definition of three event-handling methods:

e buttonClicked

This method handles the process of logging in and out from the server. The code that performs the
login process differs from the corresponding code in your program from Lab 3 in two important ways.
Rather than explicitly sending “USER” and “PASS” commands to the server, the code we have pro-
vided depends on a separate class named POPConnection to perform these steps. In addition, after
the login is complete, the code in our buttonClicked method retrieves all of the messages available
on the account, extracts summaries of these messages, and builds a menu containing one summary line
for each message. This menu is then added to the program’s window.

The code to handle the “Disconnect” button is somewhat simpler. It simply logs out from the server
and removes the message menu from the display. Like the login code, it does not explicitly send any
messages (the “QUIT” command) to the server. Instead, it depends on a method provided by the pop-
Connection class.

e menultemSelected
The menuTtemSelected method contains code to fetch a message from the server when the user se-
lects a new message from the menu created at login. This code depends on a method of the POPCon-
nection class to retrieve messages. Therefore, it does not explicitly send “RETR” commands.

e textEntered
The textEntered method provides a shortcut to pressing the “Connect” button.

POPConnection
The POPConnection class provides methods that can be used to perform basic interactions with a POP server.
It is very similar to the POPConnection class presented in class. You can construct a new POPConnection
with a command of the form

POPConnection toServer = new POPConnection(server, userid, password);

in which all three parameters are Strings. Once you have constructed a POPConnection it can be accessed
using any of the following methods:

e public boolean isConnected()
This method returns a boolean value indicating whether the login performed when the connection was
constructed succeeded.

epublic int messagesAvailable ()
This method returns the number of messages currently stored on the account.

e public MailMessage getMessage(int messageNumber)
This method takes a message number as a parameter and returns the requested message. The message
returned is an object of the Mai 1Message class described below.

e public void close()
The close method should be invoked to log out from a POP server.

In addition, the POPConnection class includes a private fetchMessage method that actually contacts the
server to retrieve messages for the getMessage method.

CS 134 Fall 2009

MailMessage

The MailMessage class is designed to provide convenient access to the components of a message retrieved
from a POP server. Its constructor takes no parameters and creates an “empty” mail message. It provides an
addLine method that can be use to add lines to the Mai1Message as they are received from the server.

Unlike the Mai1Message class described in class, this Mai1Message class stores the message as two separate
Strings. The name headers is associated with a St ring containing all of the header lines that precede
the message body and the name contents is associated with the message body itself.

Once all of the lines of a message have been added using the addLine method, two methods can be used to
access the contents of the message.

e public String toString()
This method returns the entire contents of the body of the method preceded by its most important
header lines (To, From, Date, and Subject).

e public String shortSummary ()
This method returns a single line containing parts of the header fields of the message suitable for use
as an item in the message menu.

To simplify the definition of the toString and shortSummary methods, the class includes three private
methods named getHeader, truncatedHeader, and shortHeaders. The getHeader method takes the
name of a header line (“Date: ”, “From: ”, etc.) and returns the corresponding header line for the message.
The truncatedHeader method is like the getHeader method but it takes a second parameter that deter-
mines the length of the St ring returned. The header will either be truncated or padded with blanks so that it
has the desired length. The shortHeaders method returns a String containing the From, To, Date, and Sub-
ject header lines.

Your Task

We want you to make two changes to the classes we have provided.

StringList

The MailMessage class keeps track of the lines of a message using two String variables named headers
and contents. Each of these Strings typically holds multiple lines separated by “\n” characters. We
would like you to define a recursive class named StringList that can be used to represent such a collection
of lines.

Each object in a recursive String list should include a String corresponding to a single line of text and an-
other StringList representing the remaining lines in the collection. Your StringList class should include
two constructors and two methods:

e public StringList()

e public StringList(String last, StringList rest)
One constructor should take no parameters and return an empty StringList. The other constructor
should take a String and a StringList and construct a new, bigger StringList that includes the
new line in addition to all the lines in its StringList parameter.

e public String toString()
The toString method should return a String formed by concatenating all of the lines in the
StringList together separated by “\n” characters. You will need to be a bit careful when writing
this method to make sure that the lines appear in the correct order.

e public String getLineStartingWith(String prefix)
This method should take a String as a parameter and return a line from the StringList that starts
with the specified prefix. This method should return the empty string (™) if no match is found.

CS 134 Fall 2009

Once you have defined the StringList class, we want you to change the declarations of the two variables in
the MailMessage class named headers and contents to be StringLists rather than Strings. Then,
you should make whatever other changes are necessary in the definition of the MailMessage class that are
required given this new way of representing the headers and message body. You should discover that relatively
few changes will be required to do this. In particular, you should only have to modify the MailMesage con-
structor, the addLine method and the getHeader method.

MessageList

The second recursive class we want you to define will be used to hold a collection of Mai1Messages. Each of
the MailMessages in the collection will be paired with the message number used to fetch that message from
the POP server. This class will provide two constructors and one method:

e public Messagelist()

e public Messagelist(MailMessage message, int messageNum, Messagelist rest)
The first constructor will take no parameters and return an empty MessageList. The other construc-
tor will expect three parameters: a MailMessage, an int representing that message’s sequence num-
ber, and an existing MessageList. It will form a larger MessageList by adding the MailMessage
and its sequence number to the collection.

e public MailMessage get(int messageNum)
The MessageList class will provide just a single method named get. This method will behave much
like the get method provided by the HashMap class. It will take a message number as a parameter
and, if possible, return the message associated with that sequence number. If no matching message can
be found in the MessageList, it should return null.

Once this class is written, you should use it to modify our POPConnection class in an interesting way. The
goal will be to use a MessageList to implement a local “cache” of messages that have already been fetched
from the server. Every time POPConnection fetches a message from the server, it will add this message and
its message number to this MessagelList. Then, whenever it is asked to get a message, the POPConnection
will first use the get method to see if the message is already in the MessageList. If so, it will simply return
the message provided by get. Otherwise it will fetch the message and add it to the MessageList.

Start by declaring a MessageList as an instance variable in the POPConnection class and associating this
variable with an empty MessageList. Then, modify our fetchMessage method so that it adds a pair to the
MessageList cache associating the message it was asked to fetch with its message number. Finally, modify
the getMessage method to use the get method to see if the message it was asked to retrieve is already in the
cache before invoking fetchMessage. If the requested message is in the cache, getMessage should just re-
turn it without invoking fetchMessage. If not, it will invoke fetchMessage to access the message.

In the context of the POPClient we have provided, these changes will make the program much more effi-
cient. Since our client first fetches all available message to build the message menu, all the message will end
up in your MessageList cache. As a result, when the user actually selects a message from the menu, it will
be displayed without any additional network traffic. In fact, once the menu is built, you could actually close
the connection to the server.

Getting Started

To start this lab, you should download a copy of the menu POP client described above.

o Launch Safari (you can use another browser, but these instructions are specific to Safari) and go to the
“Labs” section of the CS 134 web site (http://www.cs.williams.edu/~cs134).

 Find the link that indicates it can be used to download the Lab6Starter program.

 Point at the link. Hold down the control key and depress the mouse button to make a menu appear.

» Find and select the “Download Linked File As ...” item in the menu.

http://www.cs.williams.edu/~cs134
http://www.cs.williams.edu/~cs134

CS 134 Fall 2009

» Using the dialog box that appears, navigate to your “Documents” folder and save the
Lab6Starter.zip file in that folder.

» Return to the Finder, locate the Lab6Starter.zip file in your Documents folder, and double-click on
it to create a Lab6Starter folder.

o Rename the folder using a name including “Lab6” and your name (e.g., FloydLab6). Remember not to
include any blanks in the new folder’s name.

o Launch BlueJ and use the “Open Project” item in the “File” menu to open your Lab 6 project.

Implementation Plan

A Timing Experiment

1. First, we want you to run a simple timing experiment using the code we have provided. A handout guiding
you through this experiment will be provided at the beginning of the lab period. Copies of the timing ex-
periment handout can also be downloaded from the Labs page of the course website.

Define and test StringList

2. Create a new class called StringList. Make sure to create two constructors: one with no arguments that
creates an empty StringList; and a second with two arguments that creates a StringList from a
String and an existing StringList.

Add definitions for the 1ineStartingWith method and the toString method.

4. Test these constructors and methods using the mechanisms explained in the “Working with Multiple

Classes” appendix included with last week’s lab:

a) First, you will have to create an empty list. Select the empty list constructor from the menu that ap-
pears when you point at the St ringList icon in the project window, depressing the control key and
the mouse button. Type the name “emptylist” into the dialog box that appears and click OK.

b) Next, create some non-empty StringLists. You will do this by selecting the StringList construc-
tor that expects two parameters from the menu that appears when you point at the icon for the
StringList class. This time, the dialog box that appears will require that you type in two parameter
values in addition to letting you type in a name for the object you create. For the first parameter, you
should just type in a quoted string. For the second parameter, type in the name of one of the
StringLists you have already created. For the first non-empty stringList, this will have to be the
name “emptylist”. In general, you will use the name of the last list you created. Creating a total of 3
non-empty lists should be sufficient.

¢) Now, test your lineStartingWith and toString methods on the lists you have created by depress-
ing the mouse on the red icons for the objects in the BlueJ menu and selecting the method names from
the menus that appear.

W

Modify MailMessage to use StringList

5. Modify the MailMesage class so that the contents and headers member variables have type
StringList instead of String. Then, modify the constructor, the addLine method and the get-
Header method so that the Mai1Message class behaves as before. Test the POPClient class to verify
that it works as it did before your modifications.

Another Timing Experiment
6. Repeat the timing experiment that we had you perform to evaluate the performance of the MailMessage
class to see how the change in its implementation impacts the time required to create Mai 1Messages.

Define MessageList

7. Now create a new class called MessageList. It should have two constructors: one takes no parameters
and returns an empty MessageList. The other constructor takes three parameters: a MailMessage, an
int representing that message’s sequence number, and an existing MessageList. Also define the get
method.

CS 134 Fall 2009

Modify POPConnection to use a MessageList as a local cache
8. Add aMessageList member variable called cache in the POPConnection class. Make sure to associ-
ate cache with an empty MessagelList as part of the 1ogin method.
. Add code in the fetchMessage method to add each message fetched to the MessageList cache.
10. Modify getMessage so that it uses get to see if the desired message is already in the cache before in-
voking fetchMessage. If the message is in the cache, simply return it. If not, use fetchMessage to ac-

cess the message and return the result.
11. Test the program. At this point, the internal structure should be radically different from the start, but the

behavior of the program should be exactly the same.

Clean Up

Make sure to take a final look through your code checking its correctness and style. Check over the style guide
accessible through the course web page and make sure you have followed its guidelines. Make sure you in-
cluded your name and lab section in a comment in each class definition.

Grading

This labs will be graded on the following scale:

++ An absolutely fantastic submission of the sort that will only come along a few times during the semester.

+ A submission that exceeds our standard expectation for the assignment. The program must reflect additional
work beyond the requirements or get the job done in a particularly elegant way.

v+ A submission that satisfies all the requirements for the assignment --- a job well done.

v A submission that meets the requirements for the assignment, possibly with a few small problems.

v- A submission that has problems serious enough to fall short of the requirements for the assignment.

- A submission that is significantly incomplete, but nonetheless shows some effort and understanding.
- A submission that shows little effort and does not represent passing work.

Completeness / Correctness Style
» Correct constructors for StringList * Commenting
* toString includes lines in correct order * Good variable names
+ getLineStartingWith implemented * Good, consistent indentation
* MailMessage class modifed appropriately * Good use of blank lines
» Correct constructors for MessageList * Removing unused methods
* MessageList get method » Uses public and private appropriately

* POPClient modifed appropriately

Submission Instructions
Find the folder that BlueJ created for your project. Its name should be the one you picked for your project
(something like FloydLab6).

Click on the Desktop, then go to the “Go” menu and “Connect to Server.”

« Type “cortland” in for the Server Address and click “Connect.”

« Select Guest, then click “Connect.”

« Select the volume “Courses” to mount and then click “OK.” (and then click “OK” again)
« A Finder window will appear where you should double-click on “cs134”,

« Drag your project’s folder into either “Dropoff-Monday” or “Dropoff-Tuesday”.

« Log off of the computer before you leave.

You can submit your work up to 9 p.m. one day after your lab (9 p.m. Tuesday for those in the Monday Lab,
and 9 p.m. Wednesday for those in the Tuesday Lab). If you submit and later discover that your submission
was flawed, you can submit again. The Mac will not let you submit again unless you change the name of your
folder slightly. Just add something to the folder name (like the word “revised”) and the re-submission will
work fine.

Fall 2009

CS 134

! ()osoTo aoaxa5dodon
{()auTTIXoU UT " I9aT95dogo] = asuodsal DuTIlg
{(u1IN0a) uTautad-3no-raaxsgdogord

} ()esotro proa orrand
UOT309UUOD Syl S3euTwIsSl //

! ((pugaunod ‘Q)Hburaisgns-ojurlels)juresaed:aI9belul UINISI
{(u w)JOXSPUT OJUIFLIS = PUFIUNOD JUT

! (p)butazsgns-ojurjiels = OJullels
£ ()auTTaxau-utT - Isarasdodol = oJullels butals

! (WI¥IS) uTauTad: 3no-zoax98dogor

{

} ()oTgeTTeAaysebessaw juT oTTgnd
ISAISS S9Yl} UO STgeTTeae ssbesssu JO ISqUNU Y3} SASTIISY //

{TTnu uaniox
} ost1e {
!9besSsoIND UIN1SI

{()9UTTAXOU " UT *I9AT95d0Jo] = 9suodsoyaial
! (9suodsoyIlol) SUTTPPE 9HBSSONIND
} ((u°u)STenbo-rssuodssyilaii) STTUM

{()ouTTaxXou uUT *I9A195doJo] = osuodsoygiisl
! ()obeSSONTTEW MBU = 2DPSSSNIND SbesSSoNTTen
} ((uMO+a) U3TMSIIRIS "Ssuodsaydalial) JT

f()auTTaxXau-uT - a9ax95dogol = osuodsoygaisa Durils

! (unNebessaw + ,, ¥IHEY,) UTIUTId* 3no - 1aa195dogoq

{

} (unnebesssw JUT)obessoyolo] SLesSSSWTTeNW 923eaTad
TINU UIN3}SI IO ISAISS oYl unyebesssw Isqunu sbesssu sAsTIISY //

{QTnssI uinjisx
! (unNobessou) obeSSSNUD1IST = 1ITNSST 9DBSSONT TN

L1007 7700000777700 777777707777777777777777777
THOVSSHW FHL IED OL HHAJIS //

IHL ONILOVINOD XATIVALOY HY04dd LSITADOVSSHW ¥OOX //
WO¥d WOVSSHW HHI DNISSHOOV X¥l Ol HddH dd0d dav //
L10711000077 700007777777 00777777777777777777777777771777

{

} (wnNobessow JUT) obessopieb sbesssnITen oTTqnd
TINuU I0 wnNsbesssw Isqunu sbesssw suinisy //

{

{po302Uuod uINlaI
} ()pe3osuuo)dsT ueaTooq OoTTgnd
POYSTTgelse SeM UOTID9UUOD IL9UILdUM auTtwIr=lsq //

{

! ()osoTo aaaxasdogon

!{9sTeJ = Po3DOdUUOD
poloelex sem jdweljze utbor // } osTe {

{oanI3 = pPe30dUUO0D

I9AISS ©Y]} UO oI obessaw Auew MOY SuTwisisq //
} ((uMO+4) U3TMs3Iaels osuodsal) It

{()sutTaxau-ut - Ioax95dogol = osuodsax
IonI9s 9yl Agq peldedor sem UTHOT 8yl 1eyl 3o9yd //

{(paomssed + ,, SSV¥d,)Uur3iutad-ino-isarssdogol
{()ouTTaIxXaU UT " I9aI95dogol = osuodsax

f(x9sn + ,, ¥EASN,)UT3IUTId 3no-IoaI195dodol
UOT3PWIOJUT JUNODDE pusg //

!f()suTTaxXou uT*I9aI95dodol = osuodsal buTilg

NAHmom\mom /I9ATIOS) UOTIDODUUODISON MU = I2AI25d0Jod
IoAI9S oYyl 03 309uuo) //
} (paxomssed HuTals ‘x9sn HUTIIS
‘I9AT9sS DUTIYS)UOTIOBUUODIOd OTTand
uoT309Uu0Dd0d SSeTO JO s3oelgo I0J I030NIISU0) //

/pP93092UU0D uUeST0O0(q o93eATId
peideooe sem paomssed Isyisym //

!IonT95d0Jdo] UOTIDLUUODISN o3eaTad
I9AISS Jd0d ©Ul O3 UuoT3d09uuoDlIeN buTtATrspun oyl //

{0TT = I¥0d d0d 3IUT Teut3 =3eatad

IoAI9S JOd B 130B3UOD 03 Pasn Isqunu 3xod //
} uoTiosuuoDdod sselo orTand

¥
Tonxss dod syl Jo 3no butbboT .w*
STgeTTePAR 2IF Ssabessaw Auew MOY DUTYOSUD € «
sebessop bUTqeIo 7 «
Ionxss dod oyl o3 utr burbboT T «
ST SUOT3IOUNJ ISAISS JOd PIBPURYS SUWOS SOPTAOIJ x
%

/

X

!y 3utnbs 3x0dwT

Fall 2009

CS 134

. uanaisx

} osTe {
{(pue ‘3xe3S)HUTIISONS*SILSpPELOY UINILSI
‘(33e3s ‘,u\,)JOXSpUuT' sIspesy = pus UT

} (0 =< 37e3s) IT
{(xTFoxd) JOXOPUT SILopeSY = 3IL]S JUT
} (xT3oad butals)IaopesHisb Hurtals s3xeatad

/x
Taspeay 2yl Jo PISTIF «x
{ wiWOXF, IO ,:0L, 29Ul o9 Jybtw ,xTFoxd, ‘oTdwexs I0J
{ robesssuw oyl Jo Ispesy ,xXTJ=aid, SU3 uiInlisyg
!{()buTta3igol-sjusjuod + LU\, + ()SISPESHIIOYS UuINnIaI xx/
} ()butaagsol burais orrand
/% {
*3uUS3uUoD obesssu 9yl pue sILpesy 3IOYS 2YI {
putpnIoutr obessow TTew 9yl JO UoTsioaa A33axd e uiniay {,U\, + SUTTMSU 4 S3US3UO0D = S3U23UO0D
xx/ } esTe {
{
{ {,U\, + SUTTMSU 4 SISpeSY = SIapesy
{(HIAQIM 104rdns ‘. :309Lqgng,)IspesHpsieOUNI]y } osTe {
+ uw | w + (HIQIM WO¥d ‘., :woig,)ISpesHpsjledunii fun = S3uS3UOD
+ ou w + (HIQIM IIVA ‘. :93BQ,)ISPESHPS3BOUNI]} UINjyal } ((uu)sSTenbs-sutrgmau) 3IT
} () Axzeuwungixoys butals otTgnd } (TTnuU == s3jus3uod) IT
/% } (suTIMaU HBUTIIS)SUTTPPE pToa OTTand
*XOQ OqUOD B S9PISUT /%
putheTdsTp I0J oTge3Tns ‘obesssuw TTeW 29Uyl JO AJewwns e uUIniay y ‘butalzs Ajdwe ue Aq pejeaedss oI JUS3UOD PUB I9peay Yl
xx/ *]US3UO0D 930USP SSOUTIT I93BT OYJ 'Iopesay oyl I0J oI
poppe SSUTT 3SATI oYL -oHessaw [Tew 2yl 03 SSUTIT MU PPV
{ xx/
fuU\a + (u fe3eq,)ISpesSHISb
+ wU\u + (u :309[gng,)zspesH3sb {
+ wU\u + (u 0L,)ISpESHISDH {ITNU = s3ju83U0D
+ wU\u + (4 fwoxd,)IspesHl=sb uanisx !,.u = SIspesay
} () saepeoH1aoys butals o3eatad } ()obessoWITeW OoTTAnd
/% /x
*seuTTMau AQq pojeaedss ‘SpToTJ Iopeoay pIepueils 9yl UINiay obessow TTew Ajdwe UB 3ONIFSUOD x
xx/ xx/
{ !sxopeay buTtils o3eatad
{(usT ‘Q)buraizsgns-iTnseIr uanisx !s3jus3uod Hbutals o3eatiad
{ sbessaw TTew oYyl JO Apoq syl pue siaspesy =yl //
M 4 + 3[Nnsax = 3Tnsal
} (usT > ()yzbusr-arnssa) STTYM {€¢ = HIQIM IDJIL€NS 3JUT TeuTry s3eatad
{ {67 = HIAIM WOM¥A 3UT TeuTr3 =3eatad
{(()yabuseT-xTyoad)butajzsgns-ci[nser = JINSSI {97 = HIQIM AIVd 2JUT Teutry o3eatad
} (()yazbusr-xtyoad < ()yabusr-ainssx) IT seTIePWUNS Sbessaw 3I0YS UT Juasaid sSpPISTI JO SUYIPTM //
! (xT32ad)aepeaHleb = 3Tnsex HuTIlS
} (usT 3utT ‘xTyoxd HbuTals)IopeoHpeleOUNnI] buTtals o3eatad } obessonWTITeW sSselo oTTgnd
/* /*
*,UST, 3Isow 3B robessaw 9yl JO MSTA PLSHLPTIge UB pue
yabusT yatm ,xXTJoad, I0J IopESY POlILOUNII B UINIay ‘Azeuwuns obessow © ‘IopeSy 3I0YS © ‘I9pESy TINJ 9Yl OSASTIISDI O 4
xx/ spoy3zsu soptaoad 3T -obessaw T[TewS ue sjusssaiadeal SSeTO STIYL «

xx/

Fall 2009

CS 134

x/
{9sTeJ = PO1O2UUOD UBSTOOQ o3eaTad
{ ISAISS JOd °Y3 O3 pe3dsuuocd ATjusiind sMm inQ //
{((obessaw)oUBRJTTOIOS, MU)pPpe dURJIUSIUO0D
!{(o9sTeI)oT0er3lTPHISS "obessau {I9ATIDS0] UOTIOLDUUODJ0d °3eaTad
sebessaw AeTdsTp 03 pesn eaIe 3xX23 9yl [Ie3sul // I9AI9S Jd0d S9Yyl 03 UOT31O8UU0d InQ //
! (TeuegaInd)ppe- aurgiusliuod Y(ZT ‘NIVId°3uog ‘,I9TINOD,)3IUOJ MBU = Juojgnuaw 3uoqg o931eaTad
!{(3noboT)ppe-’IaUuRgIND !10309T9gebessaw xogoquo) o3eaTad
!{(utboT)ppe’ToURIIND !sebpessow 109T9S 03 pesn nusy //
! () TeURgQ M3U = Tauerganod
Ino pue uTl HOT 03 pesn suollng T[e3Isul // f(0G ‘0z)EPOIYIXSLL MU = obesSsSaw eaIyiIXoLL 93eaTad

eaIe STY]l uT podeldsTp oI sobesssw [Teud //
! (TeuedgaInd)ppe- aurgiusliuod

!{(ssed)ppe-TouRJIND {(GT)pIoTApIOMSSEJL M3U = Ssed PTISTJAIXSLL 93eATad
f((w:pIomssed,)TedeIr MSU)ppe’Iauedand {(0Z)PTOTAIXSIL MBU = ISSN PISTAIXSLL 3eatad
! () ToURIL MBU = TaUBRJIND paomssed ® ISTITIUSPT JUNODDOE JOd ©Y3} I923US 03 pasn //
! (TourgINd)ppe aUurgilusluod !{(,obessaw 399,)uoljingp mau = 3senbex uojzangp o3eatad
! (TosSn)ppe*TLaurgaInd !{(,209UU0DSTI(Q,)uolanNgL MOU = 3INOHOT uolzangr o3eatad
((,:23UnoOdOY TTIBRW,)TI=deTI, MSU)ppe-*auegind !{(,209UUu0D,)uolangp Mmau = uTtboT uolzangp o3eatad
! () TouRgQ MaU = Tauerganod suol3jng 90vIIL3UT I9Sn //
UOTJPWIOJUT JUNOOOE 9yl burtisjus I0J SPISTI 93e91) //
{,0PS SWRTTTTIM SO PURTII0D, = JYHAYES DuTIls Teutry s3eatad
! (@sTeJ)peaTgeumlas-isanbex 9sn 03 I=saIss 9yl //
{(9sTeJ)peTgeudlIas - 3Inobot
{(ena3)peTqeudlisSs uthot {0LY = IHOIHH MOANIM ‘0G9 = HIAIM MOONIM 3IUT Teut3y =3eatad
sejels uo3j3ang TeTaTuI // moputm s,weiboxd Jo 9zTs 8yl 3Isnlpe o3 senea osayl «bueyd //
} IobeUBWIND SpuSlIX® JUSTTOJOd Sselo oTTgnd
!Tauedindo Tauedr /x
Toued © uT I9y3lebol peoeld sT aTed eoIyIXSLL/TodgeIL yoed // *I9AISS JOd B Uybnoayly possoo0e sobessowl TTRW
MSTA 03 I9sn s3T sMOTTe weaboad STYL --- JUSTTOAOd «
‘(IH9IEH MOANIM ‘HIAIM MOAQNIM)MOPUIMS1®SID STY3] xx/
} ()3ustTdodod oTTand
/% {quog-ameeael jxodwut
sjusuodwod IN9 paatnbsa sy3z Jo TTe TIBISUI « !y butms-xeael 3xodwt

!y 3utnbs 3x0dwT

Fall 2009

CS 134

{
f()yotTO00P UThOT
} ()peasijugaxel prtoa oTTgnd

/%
uojljng utbor oYl BUTHOTTO S3TNWIS «
wx/
{
{
£ (0)UOT3TSOJ3r2Ie)}SS " obessau
{(()buta3gol-peisenbax)3xol3os obessau
} esTe {
!{(,obessow oaSTI}SI 03 STJeRUN,)IXDLISS obessau
} (TTnu == pejsenbax) IT

(T 4+ ()xopuIpe3osTasiebriojosTassbessau
) obessopNiab - I9AI950]
= polsonbox o9OeSSSNTTEN

} ()pe3losTesweiInusw proa oTTgnd

/xx

‘eI 31X93 9Yl UT 3T AeTdSTp pue 4

I9AISS 92Ul WOIJ obessaw poldsaTss a2yl sonbsay
xx/

! ()3utedsa

psAerdsTp ST nusw psiepdn 3eyl sansug //

! (pPe3102UUOD) paTgrudlss 3senbax
! (po309UUOD)POTUrRUFISS " 3noboT
! (po30O9UUOD |)PSTJRUHIISS "*UTbOT

! (1031DOoToSobessaW) SAOWSIT T 2URJIUSIUOD

i

) 3Xa]39s " ebessau
!()ssoTo"I12AI2507]

(G

nusw sbessaw 9U3l SA0WSI pueB UOT3D2UUOD |BY3x S3BUTWISL //

!{9sTeJ = pPo31oO8UuU0d

} (AnoboT == yotym) IT °STe {

!{(., paomssed Inok yosyp °‘utboT 031 STgeun,,

) 3x9L 39S - obessau
} esTe {

! (x03D9TogSobesSSaW) ppe auURJIUSIUOD

{

T 4+ WNNSSLaW = WNNsSsaw
f(()Azewungiaoys-ssawl + , (, + WONSSaW
)uS31Ippe - 10309TaSsbesssu
! (unNSsow) obeSSONIDL * IDATIDS0] = SSou 9DPSSOWTTeN
} (sobessslTe10] => WNNSSaW) STTUM

! ()oTqeTTRAYSODESSOW I9ATISS0T] =

seobessoNTP30] JUT
{7 = wnNssaw Ut

saTIPWWNS Sbesssw Y3TM nuaw oyl [TTd //

! (juognusw)3uoglos‘I0jooTaSsbessau

! () xogoquopD, Mmau

= JI03D9Togobessau

XOQTTReW UT STCQeTTIeA®R sabessaw TTe JO nuaw a3eard //
} (()pe3oeuuodST I8AISG0T) IT

L (()axar39bssed

‘()3xor39b I08N ‘YIAYHAS) UOTIODUUODJOd MU = ISAISS03
IoaISs 9yl 03 3o8Uu0) //

} (uTboT == yoTym) JIT

} (yoTUM uO3INGL) POYDTTOUOIING PToa OTTand

03 I9AISS JOd SY3} Y3 TM 3DBISIUT

/ %
*3N0 JINOo UT DOT «

‘POYOTTO ST UO3}ING U} USUYM «x
%/

10

