
Lab 5
TOC to Me

IM Client Implementation --- Part 2
Due Oct. 21/22, 11PM

In this week’s lab we will finish work on the IM client programs from the last lab. The primary goals are:

• to use multiple windows to manage more than one chat session at a time, and
• to design a program that uses more than one class.

The chat client you constructed in the last lab displayed all messages sent and received in a single 
JTextArea. Most  real IM clients create a separate window for each buddy with whom messages are 
exchanged. We would like you to extend your chat client  so that  it uses multiple windows in this way. Each 
of these windows will have its own JTextArea for displaying the messages exchanged and a 
JTextField in which your program’s user can enter messages to be sent to the buddy associated with the 
window. In addition to these chat windows, your program will display a control window used to log in, log 
out, and to start a conversation with a selected buddy. A sample of what some of these windows might look 
like is shown below.

Class Structure
One major goal when dividing a program into classes is to make the structure of the program as clear and 
logical as possible. A critical step in this process is deciding what functionality to include in each class. This 
requires deciding which portions of the information needed by the entire program will be kept  in each class. 
This in turn determines what instance variables and what methods are declared in each class.

To simplify the process of writing your first multi-class program, we will provide you with suggestions for 
the instance variables and methods for each of the classes you should define. 
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You will define three separate classes:

• IMControl: This class will create the control window that displays the fields used to enter the user’s 
screen name and password, the login and logout  buttons, the menu of buddies, the field and button used to 
add names to the buddy menu. At  least  until the end of the lab, it should also contain a text area used to 
display diagnostic information and warnings.

• ChatWindow:  This class will be used to create a window for each conversation that  takes place while 
running your program.

• TOCServerPacket: The objects described by this class will not  appear as new windows on your screen.  
Instead, the purpose of this class is to provide a better way to organize some of the code you wrote for the 
last lab. In particular, this class will provide methods that  do the work of extracting screen names and other 
subfields from the packets sent by AOL’s IM server.

IMControl
Your IMControl class will be quite similar to the class that  was your entire program last week. The class 
will still contain most of the instance variables used to refer to GUI components in last week’s lab. You will 
still need the text  fields and buttons used for entering login information and new buddy names along with the 
menu used to select  a buddy to talk to. The components used to enter messages you want to send and to see 
the messages received, however, will be moved to the ChatWindow class. IMControl will also still have an 
instance variable associated with the connection to the AOL server.

The only significant  addition to the instance variables declared in IMControl will be a variable of type 
HashMap used to keep track of which ChatWindows are associated with which ongoing conversations. The 
details of using a HashMap are discussed later in this handout.

You will make three main changes to the methods you defined last time:

1. The if statement in buttonClicked that specified how to send a message when the user clicked the 
send button will be replaced by code to create a new ChatWindow when the user clicks the button to 
start a new conversation.

2. The code in dataAvailable that  displayed an incoming message will be replaced by code to notify the 
appropriate ChatWindow that a message has been received.

3. The code within dataAvailable that examines the subparts of packets received from the server will be 
revised to use the methods of the TOCServerPacket class.

ChatWindow
Your ChatWindow class should be designed to create a separate window for each ongoing IM conversation. 

The constructor for a new ChatWindow should expect three parameters: 
• the normalized screen name of your program’s user,
• the normalized screen name of the other person involved in the conversation, and 
• the FLAPConnection your program has established with the AOL server. 

Thus, the construction of a new ChatWindow might look like:
ChatWindow newConversation = new ChatWindow(myName, buddy, toAOL);

The ChatWindow class will extend GUIManager. As a result, you can create a new window by invoking 
createWindow in its constructor just as you invoked createWindow in the constructors of your earlier 
programs. Your ChatWindow constructor should create a JTextArea in which messages can be displayed 
and a JTextField in which message can be entered, and add these components to the content  pane. Both of 
these components will be used by methods defined within the class and should therefore be associated with 
instance variables. In addition, the methods you define will need to use the two screen names and the net-
work connection that are passed as parameters to the constructor. Accordingly, you should define instance 
variables to refer to these items and include assignment statements within your constructor to associate the 
instance variable names with the parameter values. 
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You will only need to define two methods in this class:  
• textEntered 

The code in this method will be automatically executed whenever the user presses return after typing a 
message into the window’s text field. The code in your textEntered method should send the contents of 
the text field as an IM message and display it in the ChatWindow’s text area.

• messageReceived 
The code in this method will handle messages received for this conversation from the AOL server. These 
messages will actually first be accessed by invoking in.nextPacket within the dataAvailable 
method of your IMControl class. The code in dataAvailable will need to determine which ChatWin-
dow should display the message and then invoke the messageReceived method of that ChatWindow, 
passing the message as a parameter.

TOCServerPacket
The TOCServerPacket class is intended to provide convenient  access to the fields of a packet  received 
from the AOL IM server, similar to how the MailMessage class provided convenient  access to data recieved 
from the POP server in lecture. Your TOCServerPacket class should provide a constructor and the seven 
public methods outlined below.

• Constructor.  

The constructor takes the text of a packet received from the server as its parameter. It will store 
that text  in an instance variable for later processing. That  is the only instance variable you will 
need to declare in the TOCServerPacket class.

To construct a TOCServerPacket, you provide a String containing the packet  received from 
the server as a parameter in a TOCServerPacket construction. For example, if the statement

String packetContents = toAOL.in.nextPacket();

were used to access a packet from the server, then the construction
TOCServerPacket currentPack = new TOCServerPacket( packetContents );

could be used to construct a TOCServerPacket for the data received.

• public boolean isError()
public boolean isBuddyUpdate()
public boolean isIncomingIM()

These methods produce boolean values. They will be used to determine the type of packet re-
ceived. For example, if the following text was received from the server:

IM_IN2:somebuddy:T:T:<html><body>still there?</html></body>

and this String was used to create a TOCServerPacket named currentPack, then
currentPack.isIncomingIM()

produces true, while currentPack.isError() and currentPack.isBuddyUpdate() 
return false. 

• public String getBuddyName()
public String getErrorCode() 
public String getMessage()

As their names suggest, each of these methods should extract one of the fields of a packet re-
ceived from the AOL server and return it  as a String. For example, if currentPack is the packet 
above, the invocation

currentPack.getBuddyName()
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should produce the String “somebuddy”.

The getMessage method should do a little more work than the other two methods. It  should 
return the text of the message included in an IM_IN2 packet without any of the HTML that 
might  have been included in the packet. That is, the loop to remove HTML that  you included in 
the last lab’s dataAvailable method should be moved to the getMessage method’s definition 
(unless you choose to modify the rest of your program to handle displaying HTML as described 
in the Extra Credit appendix). Assuming currentPack refers to the packet described above, 
the invocation

currentPack.getMessage()

should return “still there?”.

• public boolean isBuddyOnline()

This method returns a boolean value indicating whether the third field in the packet to which it is 
applied starts with “T”. This method is meant  to be used with UPDATE_BUDDY2 packets. In 
these packets, the third field indicates whether the user whose screen name appears as the second 
parameter is online (“T”) or offline (“F”).

The seven methods described above will be the only public methods defined in TOCServerPacket. You 
could implement these methods by simply copying and revising segments of code you wrote last week. In-
stead, however, we want you to define a private method 

 private String getSuffix(int n) 

and then use this method to simplify the definitions of the public methods.  The getSuffix method will be 
quite simple. It will return a String that  is the suffix of the text  of the packet  that was passed to the 
TOCServerPacket constructor. The method will take an int value as a parameter. It  should return the suf-
fix of the packet that remains after removing all of the text  up to and including the nth colon where n is the 
value of the parameter. For example, assuming this represents the packet shown above, we have:

Invocation Result

   this.getSuffix(1) somebuddy:T:T:<html><body>still there?</html></body>

   this.getSuffix(2) T:T:<html><body>still there?</html></body>

   this.getSuffix(4) <html><body>still there?</html></body>

The definition of this method will include a simple loop. Each of the public “get” methods and the isBud-
dyOnline method of the TOCServerPacket class can then be easily defined using getSuffix.

Using HashMaps
To keep track of which ChatWindow  goes with which conversation, you will use a class named HashMap. 
The HashMap class is included within the standard java.util  library. Therefore, to use this class you 
will need to add the line

import java.util.*;

to the top of the file containing the definition of your IMControl class. Although you’ll use HashMaps to 
keep track of ChatWindows, they will only be used in the IMControl class. 

The HashMap class is like a dictionary. You can use it  to “look up” the ChatWindow associated with a 
buddy name. Of course, HashMap isn’t  included in Java just for implementing IM clients. It can be used to 
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associate values of one type with values of any other type. Because HashMap is flexible in this way, you 
have to tell Java what sort  of “keywords” you want to “define” in your dictionary and what sort  of values 
will be used as “definitions”.  We do this by including the types of the values to be used as keys and defini-
tions in angle brackets when declaring the HashMap. Since you want to associate buddy names (Strings) 
with ChatWindows, the declaration you use should look like:

private HashMap<String, ChatWindow> windowDictionary;

When creating a HashMap with new, you need to include those types again: 

windowDictionary = new HashMap<String, ChatWindow>();


Once a HashMap  is created, it  is very easy to use. To add an item to the collection of “definitions”, you pass 
the name you want to associate with the item and the item itself as arguments to the put method as in:

windowDictionary.put( buddyName, newWindow );

You can later ask which window is associated with a given name by using the invocation

windowDictionary.get( buddyName )

(If no window is associated with the name you provide as an argument  to get, the value null  will be re-
turned as its result.)  

You will need to use the HashMap in two situations in your program:
• Processing incoming IM messages.  When your program receives a new IM_IN2 packet  in its dataA-
vailable method, you will use the get method to see if a ChatWindow for that buddy already exists. 
If no window exists, you will create a new one, and add it to the HashMap using the put method. You 
should then pass the message received to the ChatWindow’s messageReceived  method so that it will 
display.

• Responding when the user presses the “Start Conversation” button.  When the user starts a new con-
versation, your program should lookup the name selected from the buddy menu in the HashMap, creating a 
new window only if none already exists. To avoid creating multiple windows for a single buddy, use nor-
malized screen names when you invoke put and get.

Getting Started
You should begin your work this week by making a new copy of your project folder from last  week, renam-
ing it  so that  its name contains your name and “Lab5” (but  no blanks). Open this project with BlueJ. Then, 
change the name of your main class from the last  lab to “IMControl” by simply changing it in the class 
header and the constructor and saving the file. 

Implementation Plan
As usual, you should plan to add code to implement  one feature at a time and to test each feature before mov-
ing on to the next step. The following gives a possible plan for such an approach.

Implement the TOCServerPacket class
1. Begin implementing the constructor, the three boolean-valued methods used to determine packet  types, 

and the private getSuffix method of the TOCServerPacket class as outlined in the appendix “Work-
ing with Multiple Classes” below.

2. Add definitions of the remaining public methods of the TOCServerPacket class: getBuddyName, 
getErrorCode, getMessage, and isBuddyOnline. Test  each of these methods by creating an appro-
priate TOCServerPacket just as you tested the other methods of this class while following the instruc-
tions in the “Working with Multiple Classes” appendix. 
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Modify dataAvailable to use the TOCServerPacket class
3. Modify the code of your dataAvailable method to take advantage of your TOCServerPacket class:

a. As soon as you retrieve a String using the in.nextPacket method at  the beginning of the dataA-
vailable method you should pass this String as a parameter in a TOCServerPacket construction 
and associate the TOCServerPacket constructed with a local variable.

b. Replace the invocations of startsWith in the branches of the if statement that  forms the body of 
your dataAvailable methods with conditions that invoke the isIncomingIM, isBuddyUpdate, 
and isError methods of your TOCServerPacket class.

c. Replace the invocations of indexOf and substring you used to extract  the relevant  fields of an 
incoming message with invocations of the getBuddyName, isBuddyOnline, getMessage, and 
getErrorCode methods of the TOCServerPacket class.

d. Test your revised program to make sure everything still works as it did before.
Note:  At  this point, the revised program will provide no functionality beyond what your program 
provided last week. The purpose of the process of defining and using TOCServerPacket was not  to 
extend what  your program could do but instead to reorganize its code so that  each individual method 
included in your program would be shorter and simpler.

Define a preliminary version of the  ChatWindow class
4. Define a ChatWindow class with a constructor that  expects no parameters. At this step, just write the 

code to create the GUI interface. You should test this by running it as if it was an independent program.
5. Next, add a textEntered method that  simply displays anything typed into the text  field at  the bottom 

of the ChatWindow in its text area.
6. Now add parameters to the constructor for the screen names of the sender and recipient of the messages 

in the window.  Modify the invocation of createWindow in the constructor so that the recipient’s name 
will be displayed in the title bar (just pass the title as a third parameter to createWindow) and modify 
textEntered so that  it  places the sender’s name before each message it  displays. You should still be 
able to test this as if it  was a single class program. After you select “new ChatWindow( ... )” from 
BlueJ’s menu it will let you type in parameter values for it to use. Just type in two names in quotes.

Modify IMControl to create and remember ChatWindows
7. Modify your IMControl class by removing the message text  field and the “Send” button. (At this point, 

it  will be temporarily impossible to send messages using your program. You will fix that once you have 
implemented the ability to manage multiple ChatWindows.)

8. Add a “Start Conversation” button to the IMControl window. Add code to create a new ChatWindow 
when this button is pressed.

9. Create a HashMap for ChatWindows when a user logs in successfully, and save it in an instance variable. 
Add code to use the HashMap to keep track of the windows created when the “Start Conversation” but-
ton is pressed. Add an instruction to get the window associated with the screen name selected in your 
buddy menu each time “Start  Converstation” is pressed. If the get method finds a matching ChatWin-
dow in the HashMap, just  make it  visible. If the get method returns null, create a new window and put 
the window and its screen name into the HashMap. 

Modify ChatWindow (and IMControl) so that ChatWindow can send messages
10. Add a FLAPConnection parameter to the ChatWindow constructor. Associate the parameter value with 

an instance variable, and add code to textEntered to actually send a message when the user types one 
into the window’s text field. Modify the instruction(s) in IMControl that create ChatWindows to pass 
the FLAPConnection to AOL as a parameter. Test your program. It  should now let  you send messages 
through individual ChatWindows (but will still display all messages received in the main window).

Modify ChatWindow and IMControl to correctly display incoming messages
11. Add the definition of a messageReceived method to ChatWindow and modify the code in your da-

taAvailable method to redirect incoming IM_IN2 messages to the appropriate ChatWindow’s mes-
sageReceived method. To do this, you will have to extract the sender’s name from the IM_IN2 mes-
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sage and try to get the associated ChatWindow from the HashMap. If no window already exists, you 
should create a new one and add it to the HashMap.

12. At this point, the JTextArea in your main window should not be used to display anything other than 
login errors. You might want to make it much smaller or replace it with a JTextField or a JLabel.

A final thought: Now that  your program is working, use it  to start a chat session and then log out.  What hap-
pens if you try to send a message?  Why?  You do not need to worry about fixing the behavior (although one 
easy solution is to just remove the logout button...).

Clean Up
Make sure to take a final look through your code checking its correctness and style. Review the comments 
you received on the work you submitted in previous weeks and make sure you address the issues raised. 
Check over the style guide accessible through the course web page and make sure you have followed its 
guidelines. Make sure you included your name and lab section in a comment in each class definition.

Grading
This labs will be graded on the following scale:
++  An absolutely fantastic submission of the sort that will only come along a few times during the semester.  

+  A submission that exceeds our standard expectation for the assignment.  The program must reflect additional 
work beyond the requirements or get the job done in a particularly elegant way. 

✓+  A submission that satisfies all the requirements for the assignment --- a job well done. 

✓  A submission that meets the requirements for the assignment, possibly with a few small problems.

✓-  A submission that has problems serious enough to fall short of the requirements for the assignment. 

-  A submission that is significantly incomplete, but nonetheless shows some effort and understanding.  

--  A submission that shows little effort and does not represent passing work. 

Completeness  / Correctness
• GUI layout
• Creating window to start conversation
• Receive message into right window
• ChatWindow class
• TOCServerPacket method definitions
• dataAvailable uses TOCPackets, and not Strings

 Style 
• Commenting
• Good variable names
• Good, consistent indentation
• Good use of blank lines
• Removing unused methods
• Uses public and private methods appropriately

Submission Instructions
Find the folder that BlueJ created for your project. Its name should be the one you picked for your project 
(something like FloydLab5).

• Click on the Desktop, then go to the “Go” menu and “Connect to Server.” 
• Type “cortland” in for the Server Address and click “Connect.” 
• Select Guest, then click “Connect.” 
• Select the volume “Courses” to mount and then click “OK.” (and then click “OK” again)
• A Finder window will appear where you should double-click on “cs134”,
• Drag your project’s folder into either “Dropoff-Monday” or “Dropoff-Tuesday”.
• Log off of the computer before you leave. 

You can submit  your work up to 11 p.m. two days after your lab (11 p.m. Wednesday for those in the Mon-
day Lab, and 11 p.m. Thursday for those in the Tuesday Lab). If you submit and later discover that your 
submission was flawed, you can submit  again. The Mac will not let you submit again unless you change the 
name of  your folder slightly. Just  add something to the folder name (like the word “revised”) and the re-
submission will work fine. 
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Appendix 1: Extra Credit Ideas
These optional items can increase the functionality of your program if you are interested in doing a bit more.  

1. Make the text wrap:

The default behavior of the JTextArea is to display the line un-wrapped. If conversation is 
the name of your JTextArea, change to wrapping with

conversation.setLineWrap( true );

2. Make the JTextArea resizable:
Change the layout manager for your ChatWindow to stretch the JTextArea to fill the window. 
To do this, include the invocation

this.setLayout( new BorderLayout() );

in your ChatWindow constructor before you add components to the content  pane. To use Border-
Layout, you will have to “import java.awt.*;” at  the beginning of your ChatWindow 
class file.  Once you do this, you will have to add a second parameter when you invoke the content 
pane’s add method to specify where the component  being added should be placed. There are 5 
choices: BorderLayout.NORTH,  BorderLayout.SOUTH,  BorderLayout.WEST,     
BorderLayout.EAST, and BorderLayout.CENTER. Only one item can be placed in each of 
these five areas. The item in the center is stretched to fill any space not used by the other four re-
gions). So, placing your text area by executing

 contentPane.add( conversation, BorderLayout.CENTER );

would ensure that it would grow if you increased the window size. Place a panel holding the JText-
Field and the label “Message:” using Borderlayout.SOUTH.

3. Show bold and colored messages by replacing JTextArea with JEditorPane:
You have seen that the IM messages received from AOL are actually encoded using HTML. We sug-
gested that you should write code to remove this HTML. An alternative is to use a GUI component 
that knows how to display HTML. The Java JEditorPane is such a component.

To use a JEditorPane you will need to:

• Use a BorderLayout as described above.
• Change the variable you used to refer to your JTextArea to a JEditorPane variable and con-

struct a JEditorPane instead of a JTextArea (the constructor expects no parameters).
• Assuming the JEditorPane variable’s name is conversation, include the invocations

conversation.setEditable( false );
conversation.setContentType( “text/html” );

in your constructor (the first one should really be there already).
• Revise your code to only remove <html>, <body>, </body> and </html> tags 
• Use setText instead of append to place text in the JEditorPane. This means you will have 

to keep a separate String variable of the entire conversation.
• Make sure that the argument  to setText begins with <html><body>, ends with </html></
body>, and includes either <br> or <p> tags between messages.
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Appendix 2:  Working with Multiple Classes
Since this is the first  time you will define several distinct  classes as part  of a single program, we will lead 
you through the initial steps in the definition of the TOCServerPacket class to show you how you can edit 
and test the separate classes that make up a multi-class program independently.

Add a TOCServerPacket class to your program
1. To create the TOCServerPacket class, click on BlueJ’s “New Class...” button, but do not select  GUI-

Manager as the type of class. Instead, use the setting “Class”. BlueJ will respond by creating a class 
definition with a skeletal constructor and method definition.
Note: The “Class” template provided by BlueJ does not include any import directives.  This particular 
class will not use any of the features of Squint or Swing, so it  is not necessary to add imports. In general, 
however, you will have to add imports for any libraries on which the class you are defining depends.

2. Begin editing this class template by replacing the comments in the first  few lines with comments that 
briefly describe the function of the TOCServerPacket class and include your name. Next, replace the 
sample instance variable declaration for “x” with a declaration for a String variable that  will refer to the 
text of the TOC packet  represented by a particular object  of this class. Update the comment that de-
scribes the variable while you are at it.

3. Now, revise the definition of the TOCServerPacket constructor. The constructor in the template in-
cludes no formal parameter declarations and sets the (now non-existent) instance variable x to 0. Your 
constructor should expect  a String consisting of the contents of a TOC packet as a parameter and should 
associate the value of this parameter with the String instance variable we told you to define in step 2.

4. Next, replace the definition of sampleMethod with a definition of isIncomingIM. This method’s defi-
nition should look like:

    public boolean isIncomingIM() {
        return your-instance-variable’s-name.startsWith( "IM_IN2" );
    }

with the italicized text replaced by the name you selected for the class’ instance variable.
5. Provide a similar definition for isBuddyUpdate. Compile your class, fixing any syntax errors reported 

until it compiles correctly. Now, even though the code you have included is quite simple, let’s test  that it 
works correctly so that you can learn how to test a class like this before trying to use it  as part of a larger 
program.

Creating an instance of your TOCServerPacket class
6. The process of creating an object  of a class like TOCServerPacket is similar to the process you have 

used to run programs in past weeks. You point your mouse at the tan rectangle in your project window 
that represents the TOCServerPacket class, depress the “ctrl” key, and then select  the   “new 
TOCServerPacket(...” item from the menu that appears when the mouse button is depressed.

7. After you ask BlueJ to construct  a TOCServerPacket it will display a dialog box like the one shown on 
the right.

In the dialog box that appears, the text field above the 
“OK” button will be empty. BlueJ wants you to fill it in 
with the String that should be provided as a parameter 
to the TOCServerPacket constructor. Type in some-
thing that  looks like the beginning of a TOC IM_IN2 
packet  as we have shown in the image on the right. The 
packet  does not have to be complete (typing in exactly 
what we have shown will actually work), but it  must  be 
included in quotes. When you have filled in the parame-
ter value, click “OK”. 
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In past  labs, when you have clicked “OK” in such a dialog box, your program’s window has appeared on 
the screen. This is because in the constructors of those classes, the code has started with an invocation of 
createWindow. The TOCServerPacket class does not invoke createWindow. As a result, after you click 
“OK”, no new window will appear. Instead, all that will happen is that  a little red rectangle will appear 
near the bottom left of your BlueJ project window.

Test the methods of your incomplete TOCServerPacket class
8. Next, point  the mouse at  the red rectangle that represents the object you just  created and depress first  the 

control key and then the mouse button. A menu will appear. The menu should include items that  look like 
“boolean isIncomingIM()” and “boolean isBuddyUpdate()”. Select  one of these items. BlueJ 
will display a dialog box presenting the result  of invoking the method you selected, true or false. 
Click “OK”. Now, follow the same procedure to select the menu item for the other method. The box dis-
played this time should contain the opposite result. If both results were correct, you should move on and 
define the third boolean-valued method required, isError. Once this method is defined, compile the 
class and test the new method just as we had you test the other methods.

Define the getSuffix method to your class
9. Enter the code to define the getSuffix method. It will require a bit more code than the boolean-valued 

methods you have already defined. It  must contain  a loop. The body of this loop should use indexOf to 
find the first  colon and then use substring to remove the colon and the text before this colon. The loop 
should also count how many colons have been removed in this way and stop when the count equals the 
method’s parameter value. 

Make your getSuffix method public
10. Ultimately, getSuffix should be a private method. We will not be able to test  its behavior using 

BlueJ’s menus, however, if it  is defined this way initially. Therefore, define it as a public method now 
and then change its definition to private after testing it as described below.

Testing the getSuffix method
11. getSuffix is a bit harder to test than the methods defined earlier mainly because is expects parameters.

a) Select  “new TOCServerPacket” from the menu that  appears when you control-press the mouse 
while pointing at the TOCServerPacket icon.

b) In the dialog box that appears, type some example text  that looks like a possible server packet. At the 
least, make sure your example contains several segments of text separated by colons.

c) After the red icon representing the new TOCServerPacket appears, control-press the mouse on its 
icon. The menu that appears should contain an item like “String getSuffix( int ... )”. Se-
lect this item.

d) Fill the field in the dialog box that  appears with some number less than the number of colons in your 
example and click “OK”. Check that the answer is correct. If not, check your code and try again.

Once you are finished testing, make the method private, so that it is hidden inside the class.
 
Complete the TOCServerPacket class
12. Now, continue in the same manner to define and test each of the other methods required in the 

TOCServerPacket class following the instructions in the implementation plan. 

Appendix 3: Sharing Your Program
In past semesters, a number of students have asked how they could send a copy of their completed IM pro-
gram to someone else so that the other person could run it without a copy of BlueJ or Squint. Instructions for 
how to do this can found at the end of the PDF version of this handout available through the course web 
page. These instructions can also be applied to any of the other programs you write this semester.

CS 134             Fall 2009

10



Appendix 3: Sharing Your Program
In past semesters, a number of students have asked how they could send a copy of their completed IM pro-
gram to someone else so that the other person could run it without a copy of BlueJ or Squint. The following 
instructions should provide a way to do this (although the other machine will probably have to have an ap-
propriate version of Java installed). These instructions can also be applied to any of the other programs you 
write this semester.

1. Open your program in BlueJ so that its project window is displayed on the screen.
2. Open your main class (“IMControl”) class and add a new method of the form:

public static void main( String [ ] args ) {
     new IMControl();
}

3. To verify that you added the new method correctly, recompile your program and then point at the main 
class (“IMControl”) icon in the project window, press the control key and the mouse button and select 
“void main( String [ ] args )” from the menu that appear. Click “OK” in the dialog box that appears. If 
everything is fine, your program should begin to run.

4. Now, select “Create Jar File...” from the “Project” menu.
5. Select “IMControl” in the “Main Class” menu, then click “Continue”.
6. Use the “New Folder” button to create a new folder to hold the standalone version of your program. 

Then, enter a name like “MyAIM.jar” (that ends in .jar) in the “File:” field for the file you will create and 
click “Create”

7. Go to “http://www.cs.williams.edu/~cs134/squint.html” in a web browser and download a copy of 
“squintV2.12.jar” into the folder that contains the .jar file you created in the previous step

8. Go to the labs page for the course and download a copy of TOCtools.jar. Place this in the folder with 
your other jar files.

9. Test that everything works by quitting BlueJ, and then finding the folder you created in step 7 and 
double-clicking on the jar file for your program. The program should run.

10. Point at the finder icon for the folder you created in step 7, depress control and the mouse button and se-
lect the “Create Archive” item from the menu that appears. This will create a .zip file out of your folder.

11. Send the .zip file to anyone you want. With a bit of luck, if they unpack the .zip and then click on your 
.jar file your program will run.
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