
Lab 3

A Multi-Message Email Reader
Due: September 30/October 1, 11 PM

During last week’s lab, you constructed a program that could be used to retrieve email messages from a
POP server. The interface provided by that program was kept deliberately simple to compensate for the
limited set of programming tools we had covered in class before the lab. All of the program’s actions
were controlled by a single button. In addition, the program gave very little feedback that would be use-
ful to the typical user of an email program.

The goal in this week’s lab is to exercise your new knowledge of if statements by modifying your mail
reading program so that it provides a more flexible and user-friendly interface. The type of window that
should be displayed by this new version of the program is shown below.

There are now 3 buttons in the
program’s window: Connect,
Disconnect and Get Message.
When the user clicks the Con-
nect button, your program should
connect and login to the mail
server. When the user clicks the
Disconnect button, your program
should send a “QUIT” message
to the POP server and close the
connection. In between, the user
may click the Get Message but-
ton as often as desired. When
the user clicks the Get Message
button, your program should re-
trieve the requested message and
display it in the upper text area.
The text area should be cleared
before the new message is dis-
played so that only one message
appears in the window at a time.
Notice that with this interface it
is not necessary to login for each
individual message retrieved.

While your program will always display three buttons, there are restrictions on the sequence in which the
buttons should be pressed. For example, initially the only thing the user should be allowed to do is enter
account information and press the Connect button. Pressing either the Disconnect or the Get Message
button before logging in would clearly be incorrect. The program should ensure that the user cannot
make such mistakes by selectively enabling and disabling buttons so that only appropriate button clicks
are possible. When the program first starts, only the Connect button should be enabled. Whenever the
user is correctly logged in, the Connect button should be disabled and the Disconnect and Get Message
buttons should be enabled.

Finally, if the user makes a mistake, your mail program should provide feedback that is more informative
than displaying a -ERR message. Instead, a message expressed in English that is free of any protocol

CS 134 Fall 2009

1

specific codes should be displayed in the message text area (i.e. the upper text area). When the program
is complete, the lower text area will be unused and can be removed from the interface.

Getting started
You should start with a copy of the code you wrote last week. To do this, use the Finder to locate the
folder containing your Lab 2 project. Select the Lab 2 folder then use the Duplicate command in the File
menu to make a copy of it. Now, rename your project with a name identifying it as Lab 3 and including
your name. For example, if your name is Floyd you might name the lab Lab3Floyd. Also, remember
the name should not include any spaces.

When you open BlueJ, it will show your lab from last week. Use the Open Project item in the Project
menu to find and open your Lab 3 project. After opening the Lab 3 project, close your Lab 2 project.

Implementation plan
Last week’s lab was designed to rely entirely on the dataAvailable method to retrieve lines sent to
your program by the server. That is, the only invocation of in.nextLine within the program should
have been within the dataAvailable method. During this lab, you will change the structure of your
program to more clearly reflect the back-and-forth nature of the dialogue between the server and your
client. Instead of relying on the dataAvailable method to invoke in.nextLine, you will place
invocations of in.nextLine immediately after the instructions in buttonClicked that transmit the
requests that cause the server to send lines to your program. As a result, your final version of button-
Clicked will resemble the code in Figure 4.11 of “Programming with Java, Swing, and Squint” rather
than the code in Figure 4.8. When you are all done, the dataAvailable method will be removed from
your program.

This is a significant change in the structure of your program. As a result, even though you will start the
lab with your working program from last week, the implementation plan suggested below will very
quickly lead you to produce a program that does not actually work correctly. Don’t worry! When you are
all done, everything will work as desired.

The plan:
1. Add code to your constructor to display the additional JButtons that are part of the new interface.

Eventually, you will want to be able to tell which button was clicked. To make this possible, you
should associate an instance variable name with each of the three buttons.

2. Modify the buttonClicked method to behave differently depending on which button the user clicks. To
do this, you need to include the declaration of a JButton parameter in the method’s header as in:
 public void buttonClicked(JButton whichButton)

Within the method, use if statements to decide which button is clicked and execute only those state-
ments relevant for that button. The code that creates the NetConnection and sends the USER and
PASS commands should be executed when the Connect button is pressed, the code to send the
“RETR” command should be executed when Get Message is pressed, and code to send a “QUIT”
command should be executed when Disconnect is pressed.
When you do this, the invocation of addMessageListener from last week’s code should end up in
the code that handles the “Get Message” button. As a result, your program will no longer work quite
correctly. You are not allowed to add a message listener to a NetConnection if you have added one
already. If you press the “Get Message” button several times in a row, your program will try to add
itself as a message listener redundantly and you will receive an error message. We will address this
issue in a few steps. For now, just check that you can connect, get one message, and then disconnect.

3. Add code to enable and disable buttons appropriately. Initially, only the Connect button should be en-
abled. Once it is clicked, it should be disabled and the other two buttons should be enabled. Then,

CS 134 Fall 2009

2

when the Disconnect button is pressed, the buttons should return to their initial state. (You do not need
to use a boolean variable when you write this code. You may if you want, but it is not required.)

4. Eventually, we want your program to replace the cryptic -ERR responses it receives from the server
with more informative messages a typical user may understand. This is difficult to do if all of the re-
sponses received from the server are processed in the dataAvailable method. Within this method,
it is difficult to tell whether a particular response was sent as a reaction to an attempt to log in or in
response to an attempt to retrieve a message. Accordingly, as your next step, you should reorganize
your program so that it does not invoke addMessageListener until just after it sends an “RETR”
command to the server and receives a +OK response to that command. To do this, you will have to
add code in your buttonClicked method to retrieve and display the +OK (and -ERR) messages re-
ceived from the server in response to creating a connection and sending “USER”, “PASS”, and
“RETR” commands.

Note: We deliberately left the “QUIT” command out of this list. The server always responds to a
“QUIT” with a +OK. Therefore, to keep things simple (and avoid one possible problem) you can im-
mediately close your NetConnection after sending a “QUIT” without retrieving the response.

Your program will still have the problem described in step 2. Trying to retrieve two messages in a row
will cause your program to add itself as a message listener repeatedly producing an error message.
Therefore, make sure not to do this until you complete step 6.

5. Now, using an if statement, revise the code in buttonClicked that handles the Connect button so
that it checks the response the server sends after receiving the “PASS” command. If the response starts
with +OK, you should disable the Connect button and enable the other buttons. Otherwise, you should
display an appropriate error message in the upper text area and leave the buttons as they are.

6. To make it possible to retrieve multiple messages, you should change your program so that it never
invokes addMessageListener. This means you need another way to process the unpredictable
number of lines a server may send to you after your program requests an email message using an
“RETR” command. To do this you will use a construct called a while loop. We have not covered
this construct in class yet. Just as we did with the if statement last week, we want to introduce you to
while loops in lab to better prepare you for our discussion of their use in class. The section entitled
“Input Loops” below provides the details you will need to write the type of while loop required in
this program. Using the information provided in that section, you should remove the invocation of
addMessageListener from buttonClicked, remove the dataAvailable method from your pro-
gram, and replace their combined functionality with a while loop.

7. The final step is to make your program respond with an appropriate error message if a user tries to ac-
cess a message but enters a message number that is out of range or invalid. To do this, you should add
one more if statement after the code that sends “RETR” requests. This code should check the response
received from the server and either display an error message or execute the loop that retrieves the mes-
sage depending on whether or not the server detected an error. Once this is complete, you may want to
remove the lower text area to simplify your program’s interface.

Input Loops
There are many situations in which a program requires executing a series of steps repeatedly until some
desired state is reached. Java includes a statement designed for such situations. It is called the while
loop. Syntactically, a while loop has quite a bit in common with an if statement with no else part. That
is, just as you can write:

if (condition) {
 a list of statements that may or may not be executed
}

you can write

CS 134 Fall 2009

3

while (condition) {
 a list of 1 or more statements to execute repeatedly
}

When the execution of a program reaches a while loop, the computer first checks to see if the condition
specified currently holds. If not, it skips the list of statement provided in the body of the loops just as an
if statement would skip the statements it controlled. If the condition in the while loop is true, how-
ever, it executes the list of statements provided in the body of the loop and then it repeats the whole proc-
ess. That is, it again checks to see if the condition is true, and then either skips the statements in its
body or executes them a second time and then repeats the process again.

while loops can be used to process multiple lines of data received from a server by repeatedly executing
the statements required to process a single line. For example, in the WHOIS protocol client shown below,
we use the dataAvailable method to process the lines of data received:

public class WHOISClient extends GUIManager {
 //Size of the program's window
 private final int WINDOW_WIDTH = 600,
 WINDOW_HEIGHT = 600;

 // The name to request information about
 private JTextField query = new JTextField(20);

 // Used to display the information requested
 private JTextArea results = new JTextArea(20, 40);

 // The connection to the server
 private NetConnection toServer;

// Display field, a button, and a text area;
 public WHOISClient() {
 this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

 contentPane.add(new JLabel("Name to look up:"));
 contentPane.add(query);
 contentPane.add(new JButton("Request Info"));
 contentPane.add(new JScrollPane(results));
 }

 // Request and display information from the server
 public void buttonClicked() {
 toServer = new NetConnection("dns411.com", 43);
 toServer.out.println(query.getText());
 results.setText("");
 toServer.addMessageListener(this);
 }

 public void dataAvailable() {
 results.append(toServer.in.nextLine() + "\n");
 }
}

We can revise this program to use a loop by replacing the line that invokes addMessageListener
with the while loop shown below:

 while (toServer.in.hasNextLine()) {
 results.append(toServer.in.nextLine() + "\n");
 }

The body of this loop is just the statement that had been used to handle lines received from the server in
the original program’s dataAvailable method. The condition in this loop uses a method named
hasNextLine. The resulting condition holds as long as there are still lines coming from the server. It
becomes false once the program has retrieved all the lines sent by the server before the server closed its
end of the network connection.

We would like you to use a while loop to process the lines of email messages your program receives from
the POP server. In your mail program, however, you cannot use the hasNextLine method to describe
the condition that determines when your loop should stop. The POP server does not close its connection
when it finishes sending your program the last line of an email message. It does not close its connection
until your program sends a “QUIT” command. Instead, the POP server tells your program that it has fin-

CS 134 Fall 2009

4

ished sending all the lines of a message by sending a line consisting of just a single period. Therefore, the
condition you should use will have the form:

! lineReceivedFromServer.equals(“.”)

The ! at the beginning of the condition is interpreted as “not”. This condition states that the loop should be
executed as long as the last line received does not equal a single period (assuming that the variable named
lineReceivedFromServer is associated with the text of the last line from the server).

To use this condition, you will have to execute an assignment statement that associates lineReceived-
FromServer or some other name of your choice with each line retrieved from the server. This assign-
ment statement, together with an invocation to append the contents of the line to your program’s large text
area will form the body of your loop.

The tricky part is that the computer will check the condition of your loop before executing its body for the
first time. Your loop’s body will contain an assignment to associate a variable name with a line retrieved
from the server, but this assignment will not be executed for the first time until after the loop’s condition
is checked. If you ask the computer to check a condition involving a variable for which no assignment
statement has been executed, your program will be terminated with an error since the computer will not
be able to interpret the condition in any reasonable way.

To avoid this, you have to retrieve the first line of the email message using an additional assignment
statement that is placed just before the loop. Thus, the overall structure of the lines to process an email
message sent by the server will be:

lineReceivedFromServer = toServer.in.nextLine();
while (! lineReceivedFromServer.equals(“.”)) {
 statements to process a single line
 lineReceivedFromServer = toServer.in.nextLine();
}

Enter such a loop in your program to complete step 6 of our implementation plan.

Submission Instructions
Take a final look! When your program seems to be working correctly, take the time to test it thoroughly.
Make sure to see how it behaves when you do unexpected things like leaving text fields empty or entering
invalid message numbers. After you are confident that your program is correct, you should take a few ex-
tra minutes to look over the code before turning it in. Look carefully for any errors that might exist but
not have been serious enough to cause your program to malfunction during your testing.

Next, look carefully at your programming style. Make sure your code is formatted in a way that makes it
easy to read. Blank lines should be used to separate distinct components of your program from one an-
other. Indentation should be used to distinguish relationships. For example, the instructions that make up
the body of a method should all be indented by the same amount and they should be indented more than
the header.

Make sure the names you chose for the variables used in your program help clarify the functions of those
names. Avoid short, cryptic names. Include final instance variable declarations to associated names with
the values used to determine things like the width of program text areas and the port number to which you
connect. Use these name in place of the values in the bodies of your constructor and method definitions.

Make sure that you include comments that explain the purposes of the instance variables that you declare.
Also provide a comment describing what each method does. If a particular method contains many lines,
try to break the body of the method into groups of related instructions and place an explanatory comment
before each group. Make sure to include a comment before your class header that includes your name

CS 134 Fall 2009

5

and lab section. Figures 4.5 and 4.11 in “Programming with Java, Swing, and Squint” provide examples
of what good formatting and commenting might look like.

Run your program again to make sure it still works after any changes you made while you were polishing
it up.

Now, return to the Finder and look in your “Documents” folder. Find the folder that BlueJ created for
your project. Its name should be the one you picked for your project (something like FloydLab3).

• Click on the Desktop, then go to the “Go” menu and select “Connect to Server.”
• Type “cortland” for the Server Address and click “Connect.”

• A window will come up which says “Connect to the file server cortland.”, select Guest, then click
“Connect.”

• A window will appear where you should select the volume “Courses” to mount and then click “OK.”
• A window will come up which says “You are connected . . .” Click “OK.”
• A Finder window will appear where you should double-click on “cs134”,
• Drag your project’s folder (whose name should look like FloydLab3) into either “Dropoff-Monday” if

you are in Monday’s lab or “Dropoff-Tuesday” if you are in Tuesday’s lab. When you do this, the Mac
will warn you that you will not be able to look at this folder. That is fine. Just click “OK”.

• Log off of the computer before you leave.
You can submit your work up to 11 p.m. two days after your lab (11 p.m. Wednesday for those in
the Monday Lab, and 11 p.m. Thursday for those in the Tuesday Lab). If you submit and later discover
that your submission was flawed, you can submit again. We will grade the latest submission made
before the 11 p.m. deadline. The Mac will not let you submit again unless you change the name of
your folder slightly. It does this to prevent another student from accidentally overwriting one of your
submissions. Just add something to the folder name (like the word “revised”) and the re-submission
will work fine.

Grading

Programming labs will be graded on the following scale:
++ An absolutely fantastic submission of the sort that will only come along a few times during the semester.
+ A submission that exceeds our standard expectation for the assignment. The program must reflect addi-

tional work beyond the requirements or get the job done in a particularly elegant way.
✓+ A submission that satisfies all the requirements for the assignment --- a job well done.
✓ A submission that meets the requirements for the assignment, possibly with a few small problems.
✓- A submission that has problems serious enough to fall short of the requirements for the assignment.
- A submission that is significantly incomplete, but nonetheless shows some effort and understanding.
-- A submission that shows little effort and does not represent passing work.

Completeness / Correctness
• GUI layout
• Connecting to the server
• Retrieving mail messages
• Disconnecting from the server
• Displaying mail messages
• Enabling and disabling buttons
• Meaningful error messages

Style
• Commenting
• Good variable names
• Good, consistent indentation
• Good use of blank lines
• Removing unused methods

CS 134 Fall 2009

6

