
Lab 2

A Minimal Email Reader
Due:  Sept. 23/24, 11 PM 

This week’s lab assignment is to write a simple email client program.  The goals of the lab are:

• to reinforce your understanding of the POP protocol, and

• to write your first Java program.  

The program you write will actually only provide half of the minimal functionality of an email client.  It will enable 
its user to read mail but not provide the ability to send mail. 

This handout provides guidance on the steps you will need to complete as you construct this program.  You should 
read the entire handout carefully before coming to lab.  In addition, you should sketch out the code you think 
you will need for at least the first steps of the lab on paper before your lab period.

In this handout, we first describe the interface that your program should provide.  We then discuss the major steps 
you will have to take to complete the program.  Next, we review the details of the process of entering your pro-
gram’s code, running your program, and electronically submitting your work when you are done.  After that, we 
explain what we will look for when we grade it.  Finally, we provide information on a number of details you will 
need to complete this program including a short review of the POP protocol.

A POP Client Interface
A sample of what the interface for your program might look like is shown below.  Across the top of its window, the 
program displays two text fields in which the user must enter his or her account information.  Below these is a field 
to hold the number of the message the user wants to see.  This field is followed by a button labeled “Get Message.” 
The remainder of the program’s window is filled with two JTextAreas.  The upper text area is used to display the 
latest message retrieved.  The text area that appears near the bottom of the window is used to display the “+OK” and 
“-ERR” messages the POP 
server sends in response to the 
commands it receives from 
your program.

While experimenting with the 
Apple Mail program, we 
learned that it fetches all avail-
able messages at once.  Your 
program will take a different 
approach.  Each time the “Get 
Message’’ button is pressed, it 
will log on to the CS depart-
ment’s email server using the 
“USER’’ and “PASS’’ com-
mands, retrieve the specified 
message using the “RETR’’ 
command, and then log out 
using the “QUIT’’ command.  
As a consequence, the user of 
the program must fill in all 
three text fields before pressing 
the “Get Message’’ button.

CS 134 Fall 2009

1



Implementation plan
It is a good idea to implement a program in small steps, testing the correctness of what you have done in each step as 
completely as possible before moving on to the next.  Otherwise, it can be very difficult to pinpoint errors when they 
occur.  With this in mind, here is a plan you may wish to follow:

1. Write the declarations and instructions to construct the elements of the desired user interface.  This code should 
resemble several examples you have seen in class or in the text.  To ensure that your password is not visible 
while you are running your program you should use a JPasswordField rather than a JTextField in your 
program’s interface.  A brief discussion of how to use a JPasswordField is provided later in this handout.

Test that the code you write works by running the program (as described later in this handout) to verify that the 
interface appears as desired.  In fact, you will probably want to run the program as soon as you have written 
enough instructions to create the first few elements of the interface and repeatedly as you add more components.

2. Add statements to create a NetConnection.  Recall that a POP server sends a welcome message as soon as a 
client establishes a connection with it.  As a result, in addition to creating the connection you should write code 
to retrieve and display this welcome message in your program’s upper text area.
a. Declare an instance variable to refer to your NetConnection, but place the assignment statement that ac-

tually constructs the connection and associates it with the variable name in the buttonClicked method.
b. After the code that creates the NetConnection, place an instruction to add the program as a message lis-

tener for the connection.  Doing this will indicate to the program that you plan to handle all messages re-
ceived from the server within a separate dataAvailable method.  That is, your final code is likely to look 
more like the code in Figure 4.11 of “Programming with Java, Swing, and Squint” than like Figure 4.8.

c. Define a dataAvailable method.  The instructions in this method will be executed each time a message 
arrives from the server.  Place code in this method to retrieve a line from the NetConnection and display 
it in the program’s larger text area.  Don’t forget to add a new line character (\n) to the end of each line.

Once you have completed these steps, run your program.  If everything is correct, a message that begins with 
“+OK” should appear in your program’s window.

Note that when you run your program, the “+OK” from the server appears in the text area at the top of your 
window.  This is not where you will ultimately want this line to appear.  The content’s of the email message 
retrieved should be displayed in the upper text area, while the “+OK” messages should appear in the lower text 
area.  For now, however, leave your code as it is.  We will correct the placement of these messages in step 6.

3. Next, actually send a command to the server. Start with the simplest command, “QUIT”.  This should cause the 
server to send back another “+OK” line.  Run your program and make sure that this extra line appears.

4. Programs that use NetConnections should close the connections once they are no longer needed.  Your pro-
gram does not currently do this.  Luckily, when you send a “QUIT” command the server will close its end of the 
connection.  Therefore, you can easily arrange to close your end of the NetConnection by defining a method 
named connectionClosed.  The code in this method will be executed as soon as the server closes the connec-
tion.  Place code to close your end of the NetConnection in this method’s body.

To verify that the connection is actually being closed, include code in your connectionClosed method that 
will append a message to your text area indicating that the connection has been closed.

5. Now that the connection is being constructed and closed correctly, you can write instructions to send the com-
mands required to login and to fetch a message.  Place the code to send these commands in your buttonClicked 
method before the code that sends the “QUIT” command.

6. As explained above, the upper text area in your program’s window is supposed to hold the text of email mes-
sages while the lower text area should hold the “+OK” responses from the server. We postponed implementing 
this behavior because it requires a feature of Java that we have not yet discussed in class, the if statement.  
Later in this handout we provide enough information about if statements to enable you to write the required 
code.  Our hope is that this limited, but practical experience using an if statement in lab will enable you to bet-
ter understand our presentation of the details of using if statements in class.

So, as a final step in your implementation, add the required if statement as described in the section “Using a 
Conditional Statement.”

CS 134 Fall 2009

2



7.  Take a final look!!!!
When your program seems to be working correctly, take the time to test it thoroughly.  Make sure to see how it 
behaves when you do unexpected things like leaving text fields empty or entering invalid message numbers. 
After you are confident that your program is correct, you should take a few extra minutes to look over the code 
before turning it in.  Look carefully for any errors that might exist but not have been serious enough to cause 
your program to malfunction during your testing.  

Next, look carefully at your programming style.  Make sure your code is formatted in a way that makes it easy 
to read.  Blank lines should be used to separate distinct components of your program from one another.  Inden-
tation should be used to distinguish relationships.  For example, the instructions that make up the body of a 
method should all be indented by the same amount and they should be indented more than the header.
Make sure the names you chose for the variables used in your program help clarify the functions of those vari-
ables.  Avoid short, cryptic names.  Include final instance variable declarations to associated names with the 
values used to determine things like the width of program text areas and the port number to which you connect.  
Use these name in place of the values in the bodies of your constructor and method definitions.

Make sure that you include comments that explain the purposes of the instance variables that you declare.  Also 
provide a comment describing what each method does.  If a particular method contains many lines, try to break 
the body of the method into groups of related instructions and place an explanatory comment before each group.  
Make sure to include a comment before your class header that includes your name and lab section.   Figures 4.5,  
4.6 and 4.11 in “Programming with Java, Swing, and Squint” provide examples of what good formatting and 
commenting might look like.

Run your program again to make sure it still works after any changes you made while you were polishing it up.

Using BlueJ to Enter and Run Your Program
You will use BlueJ to enter and run your program much as you did at the end of last week’s lab.

Begin by launching the BlueJ application (just click on its icon in the dock).  Once BlueJ is running:

1. Select “New Project” from the BlueJ Project menu and use the dialog box that appears to navigate to the 
“Documents’’ folder in your account directory.

2. Name your project.  If your name happens to be Sally Floyd, then FloydLab2 would be a great project name.  
Make sure that your project folder name ALWAYS includes your name and NEVER contains blanks or special 
characters.  Enter this name in the field labeled “File:” at the top of the dialog box.

3. BlueJ should now display a project window with your project name in its title bar.  Click the “New Class...” 
button in this window.

4. BlueJ will display another dialog box asking you to name your class and to tell it what kind of class it is.  Select 
“GUIManager’’ for the type of the class.  Name your class “EmailReader”.

5. At this point, an icon with the name you picked for your class will appear in the project window.  Double-click 
on this icon to display a window displaying the text of your class.  Within this window you can use the mouse 
and keyboard in the usual ways to edit the text of your program.

Because you told BlueJ that your class would be a GUIManager extension, its text will initially consist of a template 
that includes skeletal definitions of the constructor, a buttonClicked method, and other methods.  You can now 
begin the first step of our implementation plan by placing the code to create the desired GUI components in the con-
structor and adding declarations for any needed instance variables. You should also delete the templates for methods 
that you will not be using.

When you are ready to test your program, you can tell BlueJ to execute your code as follows:

1. Press the “Compile” button to tell BlueJ to check your code for syntactic errors and convert it into its internal 
form, Java virtual machine code.

2. Point the mouse at the icon for your class in the project window, depress the “ctrl” (control) key, and then de-
press the mouse button to make a menu appear.

3. Select the first item in the menu.  It should look like “new EmailReader()”.  This tells BlueJ to create an 
instance of your class and to execute the instructions you placed in its constructor.  Just use the default name for 

CS 134 Fall 2009

3



your instance provided by BlueJ.  An icon for this new instance will appear in the bottom of the project window.   
A window will appear on the screen and any GUI components your code creates will appear within the window.

You should now be able to interact with your program.  Try entering a user id or pressing the button.  When you are 
done, select “Quit” from the “BlueJ Virtual Machine” menu to terminate your program.  DO NOT just close the 
window by clicking on the red button in the upper-left corner.  Actually quit instead.

What if my program doesnʼt work?
While you are working on this lab, a disturbing thing may happen.  Your program may not do what you expect.  For 
example, instead of seeing nice “+OK” messages in your text area it may be filled with “-ERR” messages.  There is 
a technique that may help you identify the source of your problem.  Before running your own program, start 
TCPCapture and configure it to capture all POP packets.  Then run your program and look at all the packets that are 
sent between your client and the server.  You will see the actual contents of the messages your program sends along 
with the “+OK” and “-ERR” message from the server.  This should provide you with a better understanding of what 
is going wrong and enable you to fix the problem. 

Submission Instructions
Return to the Finder and look in your “Documents” folder.  You should find the folder that BlueJ created for your 
project.  Its name should be the one you picked for your project (something like FloydLab2).

• Click on the Desktop, then go to the “Go” menu and select “Connect to Server.” 
• Type “cortland” for the Server Address and click “Connect.” 
• A window will come up which says “Connect to the file server cortland.”, select Guest, then click “Connect.” 
• A window will appear where you should select the volume “Courses” to mount and then click “OK.” 
• A window will come up which says “You are connected . . .” Click “OK.” 
• A Finder window will appear where you should double-click on “cs134”,
• Drag your project’s folder (whose name should look like FloydLab2) into either “Dropoff-Monday” if you are in 

Monday’s lab or “Dropoff-Tuesday” if you are in Tuesday’s lab. When you do this, the Mac will warn you that 
you will not be able to look at this folder. That is fine. Just click “OK”. 

• Log off of the computer before you leave. 

You can submit your work up to 11 p.m. two days after your lab (11 p.m. Wednesday for those in the Monday Lab, 
and 11 p.m. Thursday for those in the Tuesday Lab). If you submit and later discover that your submission was 
flawed, you can submit again. We will grade the latest submission made before the 11 p.m. deadline. The Mac will 
not let you submit again unless you change the name of your folder slightly. It does this to prevent another student 
from accidentally overwriting one of your submissions. Just add something to the folder name (like the word “re-
vised”) and the re-submission should work fine. 

Reality Check!
Admittedly, the program you have just completed provides far less functionality than any real mail client.  It is, 
however, real in the sense that the protocol it uses is the same protocol used by real mail servers.  This means that, 
you should be able to use it to read mail in any of your real mail accounts. If you are curious, you can verify this by 
making a few small changes.

If you use your Williams email account, you can read the mail stored there by just making one simple change to 
your program.  Instead of connecting to the server cortland.cs.williams.edu, change your program to connect 
to studentmail.williams.edu.  Then, use your OIT account ID and password when contacting the server.

If you use Gmail, you will have to do a little more, but not much.  Again, you will use a different server.  The 
server’s name is pop.gmail.com.  The other changes required result from the fact that Google Mail uses a different 
type of connection to provide more privacy/security.  First, instead of constructing a new NetConnection in your 
program, you should create a new SecureNetConnection.  From your program’s point of view, a SecureNet-
Connection works just like a NetConnection, but this new class will send your data in an encrypted form.  You 
will also need to change the port number you connect to from 110 to 995.  Once you make these changes, run your 
program, enter your Gmail account ID and password, and you should be able to retrieve messages.

CS 134 Fall 2009

4



Grading
Grading will typically be done by evaluating your lab submission based on three sets of criteria:  how complete your 
code is, how well it works, and how clearly it is written.  Completeness measures whether you have done a reason-
able job of writing  instructions to provide the desired functionality, even if the instructions you wrote don’t fully 
work.  Correctness measures whether all the desired functionality works as we expect it to.  Good style is also an 
important quality for programs to have; it is essential to make programs readable and understandable.  Over the 
course of the semester we will get pickier about style issues, but it is important for you to get into good habits from 
the very beginning.

Completeness  / Correctness
• GUI layout
• Connecting to and disconnecting from the server
• Logging in
• Retrieving mail messages
• Displaying mail messages in top text area
• Displaying server responses in bottom text area


 Style 
• Commenting
• Good variable names
• Good, consistent indentation
• Good use of blank lines
• Removing unused methods

Programming labs will be graded on the following scale:

++  An absolutely fantastic submission of the sort that will only come along a few times during the semester.  

+  A submission that exceeds our standard expectation for the assignment.  The program must reflect addi-
tional work beyond the requirements or get the job done in a particularly elegant way. 

✓+  A submission that satisfies all the requirements for the assignment --- a job well done. 

✓  A submission that meets the requirements for the assignment, possibly with a few small problems.

✓-  A submission that has problems serious enough to fall short of the requirements for the assignment. 

-  A submission that is significantly incomplete, but nonetheless shows some effort and understanding. 

--  A submission that shows little effort and does not represent passing work. 

Using a JPasswordField
In this lab, you should use a form of GUI component called a JPasswordField.  This is a text field specially de-
signed for inputing passwords.  Unlike a normal text field, a JPasswordField doesn’t show the characters a user 
types into the field.  Instead it displays a star for each character typed.

While a JPasswordField provides a slightly different interface to the user of a program, it can behave just like a 
JTextField from the programmer’s point of view.  To make Java aware that you want to treat the JPassword-
Field just like a JTextField within your code, you simply declare the variable in your program that will refer to 
the JPasswordField as a JTextField.  That is, instead of using a declaration like

JPasswordField password = new JPasswordField( FIELD_WIDTH );

you should use a declaration of the form

JTextField password = new JPasswordField( FIELD_WIDTH );

CS 134 Fall 2009

5



This is a bit unusual. In examples we have seen previously, the type provided before a variable’s name in its declara-
tion has been the same as the name used with “new” to create the object associated with the variable.  Java recog-
nizes, however, that certain types of objects are just special cases of other types. This is very common in the real 
world.  Just as a cat is an animal or milk is a beverage, in Java, a JPasswordField is a JTextField. 

Using a Conditional Statement
There is a construct in Java that makes it fairly easy to revise the dataAvailable method in such a way that the 
“+OK” responses from the server will not appear in the same text area as the contents of email message you retrieve.  
It is called an if statement.  It allows you to tell Java to choose between executing two sets of instructions in a 
method based on a specified condition.  For example, in your mail program you could use an if statement to enable 
Java to choose whether a line retrieved within your dataAvailable method should be displayed in the top text 
area or the bottom text area based on whether or not the line began with the text “+OK”.  

An if statement takes the form:

if ( some-condition ) {
 statement(s) to execute if the condition is true
} else {
 statement(s) to execute if the condition is false
}

For your program, the condition that should determine which text area to use is whether the latest line received from 
the server begins with “+OK” or not.  If the name lineFromServer refers to the latest line retrieved from the 
server, you can express this choice in Java by saying

if ( lineFromServer.startsWith( “+OK” ) ) {
 statement(s) to execute if condition is true
} else {
 statement(s) to execute if condition is false
}
 

The statement(s) included within the first pair of curly braces should append the contents of the line received to the 
lower text area.  Statements to display the line received in the upper text area should be placed between the second 
pair of curly braces.  In order to use this code, you will have to place lines to declare the variable linesFrom-
Server, to get the next line from the server, and to associate this line with the variable linesFromServer before 
the if statement.

We want you to modify your POP program so that the final version of your dataAvailable method includes such 
an if statement.  Of course, this code will be fooled by any email message that contains a line that actually starts 
with “+OK” or if the server sends a “-ERR” response.  We will worry about how to deal with that issue next week....

Summary of POP
You should be familiar with the operation of the POP protocol from last week’s lab.  Just in case, however, we 
adapted the following fragment from last week’s handout to provide a refresher.

POP operates on port 110.  So, when you create a NetConnection in your program it should be connected to port 
110 on our mail server, cortland.cs.williams.edu.  Each POP command should be sent as a separate line.

The first two POP commands you will need identify the account whose mail is to be accessed:

USER - The first packet sent to the server should be composed of the code “USER” followed by a space and then a 
user name (such as jrl2).

PASS - The second packet sent to the server should be composed of the word “PASS” followed by a space and then 
the account password. 

Next, you will send one command to retrieve the requested message:

CS 134 Fall 2009

6



RETR - The retrieve request must include the number of the message to retrieve.

When you are all done you will send the server a simple “QUIT” command and then close the connection.

The POP server will send a packet back to your client in response to each command it receives.  These packets will 
begin with a “+OK” or “-ERR” code indicating whether the request from your client was acceptable or not.  POP 
servers usually includes explanatory information after the “+OK” or “-ERR” summary code.  

CS 134 Fall 2009

7


