CS 134 Fall 2009

Using BlueJ’s Debugging Tools: Part I

The BlueJ environment provides tools to help you identify errors that occur in your program. Knowing
how to use these tools can make it much easier to understand and correct a programming mistake. For the
first part of this lab, we would like you to become familiar with BlueJ’s debugger by completing the fol-
lowing tutorial which simulates the debugging of a Java program.

The program we will work with is a not quite correct version of the POP client we had you construct in
lab last week. A complete listing of the code for this program is attached to this handout. A sample of
the interface that should be provided by the program you will be debugging is shown below. It should be
quite familiar.

800
Mail Account: tom Password: ***%**
Message Number To Retrieve: 5 [_' Cet Message
From: Jim Teresco <terescoj@cs.williams.edu> &

To: tom@cortland.cs.williams.edu
Subject: NEED YOUR HELP!

Dear Kind Sir:

| am your distant cousin from Elbonia. | am in great need to your
assistance. The sum of $1,000,000 (one million) will be deposited to
your account. Please help. Your great-great-second-and-a-half-cousin
uncle passed away and you are the closest relative. Click here to

receive your $1,000,000. This is not a hoax.

Kindest regards,
Elbonian Relative

e

< b >

+0K Name is a valid mailbox
+0K Mailbox locked and ready O
+0K Message follows

+0K

4 3 »

[

4

To download a copy of this program into your own account:

o Launch Safari (you can use another browser, but these instructions are specific to Safari) and go to
the “Labs” section of the CS 134 web site (http://www.cs.williams.edu/~cs134).

« Find the link that indicates it can be used to download the IncompleteLab2 program.

» Point at the link. Hold down the control key and depress the mouse button to make a menu appear.

« Find and select the “Download Linked File As ...” item in the menu.

» Using the dialog box that appears, navigate to your “Documents” folder and save the
IncompleteLab2.zip file in that folder. (You may want to click on the arrow to the right of the
“Save As:” text field to make the navigating process easier.)

o Return to the Finder, locate the IncompleteLab2.zip file in your Documents folder, and
double-click on it to create a IncompleteLab?2 folder.

o Launch BlueJ. By default, BlueJ will open the project you created for last week’s lab. DO NOT
close this project quite yet.

» Using the “Open Project” item in the “File” menu, open the IncompleteLab2 project. Once
you have done this, close your project from last week’s lab.

CS 134 Fall 2009

Seeing Red

Many of you have probably already made some sort of mistake while programming that made BlueJ pop
up a window full of indecipherable messages displayed in a frightening shade of red. One of your main
goals during this tutorial will be to learn a bit about how to interpret these messages, which are known as
run-time error messages.

To produce a sample of one of these messages:
o Run the “SimplePopClient” program in the project we had you download (i.e., select “new
SimplePopClient()”).
o Enter your account identifier, password and a small message number.
o Click “Get Message”.

That should be enough to get a window full of red ink. (If you don’t see such a window, it might be hid-
ing under your program’s window. Move some windows around to see if you can find it.)

The window that appears may initially look like the image shown below. The window is divided into two
sections with the red stuff that we are interested in hidden in the smaller section on the bottom.

®n0o Blue): Terminal Window - POPDebug
'y
™
-
v
<€ : R
NASTY B
at java.awt.EventDispatchThread.pumpEventsForHierarchy(JQ‘lLDlupﬂLChThr A
RED *aL java.awt .EventDispatchThread.purpEvents (EventDispatchThread. java: 178 =
STUFF at java.awt.EventDispatchThread.pum nts(E Je*lLDl_.paLchThread jawva:170
at java.awt.EventDispatchThread.run(EventDispatchThread. java: J.005
v
« € :] Ly,

If this is the case, then grab the dot in the middle of the bar between the upper and lower sections and
drag the boundary upwards so that the bottom area fills most of the screen. You may also want to stretch
the whole window and scroll the contents so that your window finally looks like:

806 Blue): Terminal Window - Incompletelab2

(= 15

>

Exception in thread "AwWT-EventQueue-0" java.lang.IllegalArgumentException: Unable to establish connection to unknown host "cortland.williams.edu"
at squint.TCPSocket.makeSocket (TCPSocket.java:l22)
at sgquint.TCPSocket.<init>(TCPSocket.java:96)
at sguint.NetConnection.<init>(MetConnection.java:47)
at SimplePopClient.buttonClicked({SimplePopClient.java:82)
at sguint.SimpleEventListener.actionPerformed(GUIManager.java:l245)
at javax.swing.AbstractButton.fireActionPerf ormedfﬂbﬂLracL]uLLoﬂ java:1882)
at javax.swing.AbstractButton$Handler.actionPerf DI]’[lEd'[\\b.;LIﬂCLBULLD‘l java:2202)
at javax. .m.ng pefaultButtonModel. fireActionPert Drmcdec aultButtonModel. java:420)
at javax.swing.Def aulLJuLLo‘wodcl setPressed(DefaultButtonModel.java:258)
| .swing.plaf.basic.Basi JuLLD“xLlf‘LD‘lCr mDu“DRClQa“Dd’Ba"lcluLLD‘lLlf‘LD‘lDr java:z3d)

;) -awt
at javax.swing.JComponent. procc MouseEvent (JComponent. java:3126)
at java.awt.Component.proc ent (Component.java:5319)
at java.awt.Container.proc c:]L{..D:lLa.anr,;ava:EOlO:
at java.awt.Component.disp ventImpl (Component. java:4021)
at java.awt.Container.dispatchEventImpl(Container.java:2068)
at java.awt.Component.dispatchEvent (Componen a:3869)
at java.awt.LightweightDispatcher.retargetMo ent{Container.java:
at java.awt.LightweightDispatcher.processMouseEvent (Container.
at java.awt.LightweightDispatcher.dispat ent(Container. a:a 3809)
at java.awt.Container.dispatchEventImpl(Cont er.java:zo:eﬂ
at dava.awt.Window.disnatchRventTmnl (Window. iava:z 17741 P

CS 134 Fall 2009

Interpreting BlueJ Error Messages
The most important line in the red text that BlueJ has displayed is the first line shown:

Exception in thread "AWT-EventQueue-0" java.lang.IllegalArgumentException:

Unable to establish connection to unknown host "cortland.williams.edu"
The first line tells you that a run-time error has occurred. Java calls such errors exceptions. Most of the
first half of the line is a typical bit of Java gibberish, but the second half of the line is actually quite in-
formative. It tells us exactly what when wrong. The program was unable to establish a network connec-
tion to the machine "cortland.williams.edu". This is not surprising since there is no such machine.
The machine the program is supposed to connect to is "cortland.cs.williams.edu". The pro-
grammer apparently left out the “cs” while typing in the name of the server.

This program is short enough that we could easily find the place where the server’s name was misspelled
and correct it. In larger programs, however, this might not be so easy. As a result, Java’s red error mes-
sages contain additional information to help us identify the precise line where the error occurred. Some-
times, however, you have to work a bit to find this information.

Take a look at the next few lines that Java displayed when the error occurred. They should look like:

at squint.TCPSocket.makeSocket (TCPSocket.java:122)

at squint.TCPSocket.<init>(TCPSocket.java:96)

at squint.NetConnection.<init>(NetConnection.java:47)

at SimplePopClient.buttonClicked(SimplePopClient.java:82)

at squint.SimpleEventListener.actionPerformed(GUIManager.java:1245)

The first few of these lines should seem pretty useless. You have never even heard of most of the words
that appear in these lines including TCPSocket and makeSocket. You should notice, however, that the
punctuation included suggests that TCPSocket .makeSocket(...) might be some sort of method
invocation. In the third line, you can at least find a familiar name, NetConnection. Finally, in the
fourth line you see two names that are actually defined within the program you are trying to debug,
SimplePopClient and buttonClicked.

This collection of lines traces the major steps the program was trying to perform when the error occurred.
The fourth line says that the program was executing the instruction at line 82 within the definition of the
SimplePopClient class. (Since any slight change to the program is likely to change the numbering of
its lines, the number displayed on your screen may not be exactly 82. If so, just note the number that does
appear and use it in place of 82 in the instructions that follow.) Furthermore, it tells you that the line
where the error occurred was part of the buttonClicked method defined within that class.

Now that you know that the error occurred in the buttonClicked method on line 82 (or very nearby):

» Return to the the project window and double click on the icon for SimplePopClient to display
the source code for the class.

« Select “Go to line...” from the “Tools” menu.

 Enter the line number that appeared in the buttonClicked line of the error message in the dialog
box and click “OK”.

o BlueJ will now indicate which line in the program was the immediate source of the error by placing
ared cursor at the left end of the line. The indicated line should appear near the beginning of the
buttonClicked method.

If you find using “Go to line...” a little clumsy, there is a way to tell BlueJ that you would like it to always
display line numbers next to the lines of your program. To do this:

o Select “Preferences” from the “Blue]” menu.

¢ Click on the “Editor” tab.

« Click to check the box next to the “Display line numbers” option.
e Click “OK”.

CS 134 Fall 2009

In the remainder of this handout, when we show images of a BlueJ program editing window, they will
include such line numbers at the left edge of the window.

Once you get to the right line, you should discover that it contains the construction of a NetConnection
and that the machine name specified is indeed missing the “cs”. Correct the machine name.

Before trying to run the corrected program, take another look at the lines BlueJ displayed after the first
line of its error message:

at squint.TCPSocket.makeSocket (TCPSocket.java:122)

at squint.TCPSocket.<init>(TCPSocket.java:96)

at squint.NetConnection.<init>(NetConnection.java:47)

at SimplePopClient.buttonClicked(SimplePopClient.java:82)

at squint.SimpleEventListener.actionPerformed(GUIManager.java:1245)

We now know that the fourth line describes the instruction our program was executing when the error oc-
curred, a line that constructs a new NetConnection. To construct a NetConnection, Java executes
code provided within the Squint library. The third line tells us that the 47th line of the code within the
library that describes how to <init>ialize a NetConnection was being executed when the error oc-
curred. Just as your code depends on code in the library, the instructions that initialize a NetConnec-
tion depend on other code provided within the library. In particular, the second line above indicates that
as part of initializing the NetConnection, the code to initialize something called a TCPSocket was used.

Basically, when you construct an object defined within any of the Java libraries or invoke a method on
such an object, the computer will execute code that you did not actually write. This code is instead pro-
vided within the library. Frequently, errors in your code are actually detected while executing instructions
provided within the libraries. When this happens, the lines that BlueJ includes after the first line of an
error message will describe steps performed within the libraries. In this case, to get information that will
actually help you determine where the error occurred, you must read through the message Bluel displays
until you find the name of a method or class that you actually defined. The line number provided at the
end of that message will lead you to the line in your code that was executing when the error happened.

Breakpoints
Make sure that you have “fixed” the program by adding “cs.” to the machine name.

Next, before running the program again, make sure to clear the red error messages from Bluel’s terminal
window. If you don’t, they will stay in the window and it is easy to get confused and think that a problem
you have fixed is still occurring. To clear the messages:

« Make sure the window containing the error message is active (click on it once to be sure),
» Select “Clear” from the “Options” menu (or just press “K” while holding down the command key).

Now, compile the program, run it again, and try to access an email message. You will discover that the
program isn’t actually fixed yet. More red ink!

This time, the first line displayed should say
Exception in thread "AWT-EventQueue-0" java.lang.NullPointerException

This indicates that BlueJ has encountered what it calls a null pointer exception. What this means is that
the program tried to use the value associated with some variable name before any value had actually been
assigned to the variable. That is, the variable is correctly declared, but no assignment statement that
would associate a meaning with the name had yet been executed.

As with the previous error message, BlueJ includes a long list of lines indicating what the program was
doing. These lines can be used to determine the exact line where the error occurred. All you have to do is
find the first of these lines that includes the name of the class SimplePopClient. Itis easy to do in this

CS 134 Fall 2009

case because the name SimplePopClient appears in the very first line. Using the contents of this mes-
sage, find the line within the SimplePopClient program that caused the error.

The line you find should contain references to two variables, log and toServer. Given that the error is
a null pointer exception, the next step is to figure out which of these variables has never been assigned a
meaning. In this case, by process of elimination, we can tell that 1log must be the undefined variable be-
cause an assignment to toServer immediately precedes the line where the error occurred.

In general, it is not always so easy to determine which name’s meaning is undefined when a null pointer
exception occurs. In such cases, it would be nice if there was a way to ask BluelJ to tell you the values of
the variables used. Unfortunately, after an error like this has occurred, BlueJ cannot provide you with the
values of variables. It is possible, however to arrange things so that when we run the program again,
BlueJ will stop execution just before executing the troublesome line and let us examine the values of the
variables at that point.

To do this, we set what is called a breakpoint before executing the program. This is quite easy to do.
Simply position the mouse cursor in the narrow channel along the window’s left edge and on the line that
caused the error as shown below:

000 SimplePopClient

Compile Cut| |Copy| |Paste| |Find...| |Find Next||Close Implementation ﬂ
& message = new JTextArea(MESSAGE_HEIGHT, TEXTAREA_WIDTH); 4
k) contentPane.add(new]ScrollPane(message));

7 JTextArea log = new JTextArea(LOG_HEIGHT, TEXTAREA_WIDTH);

72 contentPane.add(new]ScrollPane(log) J;

73

74 1

75

78

b

) public void buttonClicked(JButton which) { []
Bl

82 toServer = new NetConnection("cortland.cs.williams.edu", 110);

E?& log.setText(toServer.in.nextLine() + "\n" J;

B4

8BS

86 toServer.out.println{ "USER " + user.getText()); v

saved |

Then, click the mouse once and a little red stop sign will appear in the channel indicating that a break-
point has been set on that line. If you place the breakpoint on the wrong line by accident, just click again

on the stop sign to remove it and then click on the correct line to place another stop sign. In fact, you can
place stops signs on as many lines as you like and the computer will stop as soon as it reaches any of

these lines. On the other hand, every time you change and re-compile your program, all the stop signs
you have added will disappear and you will have to reposition them on the appropriate lines before run-

ning the program again.

Now, run the program again, enter your account id, your password and a message number then click “Get
Message”. Then attempt to retrieve a message. This time, your program should stop just before the error
would occur. BlueJ will let you know that this has happened in two ways. First, in the window display-
ing the program’s text, it will indicate the line where execution was stopped by highlighting it and placing
an arrow in the channel with the stop signs as shown below:

CS 134 Fall 2009

ene SimplePopClient

] message = new JTextArea(MESSAGE_HEIGHT, TEXTAREA_WIDTH); 2
7 contentPane.add(new JScrollPane(message) J;

7n JTextArea log = new JTextArea(LOG_HEIGHT, TEXTAREA_WIDTH);

72 contentPane.add(new JScrollPane(log) J;

73

4 }

75

7%

”

78

7

B2 public void buttonClicked(JButton which) { B
B1

52 toServer = new NetConnection("cortland.cs.williams.edu", 118);

& log.setText(toServer.in.nextlLine() + "\n");|

B4

85

56 toServer.out.println("USER " + user.getText() J;

Fhread "AWT-EventQueue-0" stopped at breakpoint.

v
saved |
A

In addition, a new “Debugger” window will appear. An image of the debugger window is shown below.

Thread 8eoe Blue): Debugger
List ‘“\-\H‘Threads

Thread-8 (running) 2
AWT-EventQueue-0 (at breakpoint) m
Thread-% (waiting)

Thread-6 (running) v

Call Sequence Static variables

SimplePopClient.buttonClicked 4 int windowCount = 1 A

squint.SimpleEventListener.actionPerformed String uiClassID = "PanelUl”

Javax.swing.AbstractButton.fireActionPerformed String uiClassID = "ComponentUl” (hidden)
“

j .swing.AbstractBurton$ Handler.actionPerformed
Method Jjavax.swing =
I Javax.swing.DefaultButtonModel.fireActionPerformed

. y Instance variables 1
IHVOCBthl'l {avax.SW|ng.DeFauItButtonMode\.setPressed int WINDOW_WIDTH = 650 Varlable
LiSt J_avax.SW|ng.pIaf.bas|c.Bas|cButtonustener.mouseReleased * int WINDOW_HEIGHT = 550 Values

J_awa.awt..Component.processMouseEvent int FIELD_WIDTH = 15
Jjavax.swing.JComponent.processMouseEvent e TEVTADE A WIMTL _ £
4

Jjava.awt.Component.processEvent

Jjava.awt.Container.processEvent [l ven e s

Jjava.awt.Component.dispatchEventimpl JButton which = <object reference>

Jjava.awt.Container.dispatchEventimpl

Jjava.awt.Component.dispatchEvent v
S

| | e X
By
Halt Step Step Into Continue Terminate

Chances are that the window that appears on your screen won’t be quite big enough to see things well. If
so, take a little time to resize the window and its sub panels until they look more like the image above.

In the upper portion of the window, it lists the “Threads” that are currently executing under Bluel’s con-
trol. Each independent activity going on inside your machine is called a thread. The only thread you
really care about is the one running your code. In this case, BlueJ has indicated that this is being done by
the thread named AWT-EventQueue-0.

Below the thread list on the left side of the window, BlueJ provides a list of method names similar to the
one provided in the error message we examined earlier. At the top of the list is buttonClicked, because
that is the method whose code was executing when the breakpoint was encountered. Below button-
Clicked is actionPerformed, a library method which invoked buttonClicked, an so on.

On the right side of the window, BlueJ displays the variable names being used and the values associated
with them. These are divided into three sections: the static variables (which we don’t even know about
yet), the instance variables, and the local variables.

CS 134 Fall 2009

One of the two variables log and toServer must be undefined. So use the scroll bar to the right of the
“Instace variables” pane of the debugger window to find them in this list. They will probably be near the
top. The value of one of them will be described as “null” within the debugger window. This is the vari-
able that was never assigned a value. The other variable will be described as an “object reference”.

As predicted, you should find that the 1og variable is undefined or “null”. Now, the hard part begins, you
have to look through the program to see how this could happen. The most obvious explanation would be
that the programmer simply forgot to assign a value to the variable. The BlueJ debugger cannot really
help you determine if this is the case, but the BlueJ editor can.

You can use the editor to search for any assignment statements involving log:

o Select “Find” from the “Tools” menu (or just press command-F).
o Enter “log =" in the dialogue that appears.
 Press “Find Next” once or twice.

Doing this should be enough to find the assignment to log that appears in the constructor as shown below.

SimplePopClient

Compile||Undo||Cut||Copy||Paste||Find...| |Find Next||Close Implementation
7 JTextArea log;

72 log = new JTextArea(LOG_HEIGHT, TEXTAREA_WIDTH 3;

73 contentPane.add(new JScrollPane(log) J;

74

7 }

1 ublic void buttonClicked(JButton which ™ &
& ° t C 8e0e Find

8 toServer = new NetConnection("cortle Find]log = m

B4 log.setText(toServer.in.nextLine() 4 2= Mk

& Replace: C Replace)

86 1 D

g7 toServer.out.println("USER " + user, M Ignore case ") Search up ("Replace All)
log.append(toServer.in.nextline =

e g-app C O+ __| Whole word @ Search down

Close

Find: forward (ignore case): log =

Il 2T

If you look at the line before the assignment, you will discover the source of the problem. The construc-
tor includes a declaration for 1og. log is also declared as an instance variable by the declaration

// +OK and -ERR messages from the server are displayed in this area
JTextArea log;

which appears before the constructor. Java considers the instance variable log and the local variable log
to be distinct and separate. The assignment in the constructor associates a meaning with the local variable
log, but not with the instance variable. All the references to 1og found within the buttonClicked method
are interpreted as references to the instance variable log.

To fix this problem, all you need to do is delete the declaration of 1og that appears in the constructor.

« Close the “Find” window.
o Delete the declaration of 1og as a local variable found in the constructor.
» Compile and run the program again to verify that it now works correctly.

You can now begin working on the improved email program described in the lab 3 handout. We should
warn you that when we wrote the “Getting Started” section of Lab 3, we did not account for the fact that
you would be completing this tutorial first. The lab handout says that when you start Bluel, it will open
your Lab 2 project. Now, a) you will already have started BlueJ, and b) it will have the program you just
debugged open. This may be a bit confusing, but it should not cause any real problems.

Fall 2009

CS 134

{()aso[o"1oAI850}
{(,U\UOI}OBUUOD PaSO|D Sey JanIas,)puadde bo)

{

} ()pasojpuonosuuod pioa olgnd

{

{(,u\, + @suodsayianias)puadde-abessaw
Yesie{

{()os0[010AI1850}

{(JU\, + 8suodsayianias)puadde 60|
} ((W MO+, JyiMsHels asuodsayianias) Ji
‘(Jaurmxau-urianlagol = asuodsayJianias Bullg

{

} ()aiqejreayeyep pioa ongnd

‘(W LINO. JupuLdIN0 18NS0}
uo1}08UU0d By} jeulwls] //

{('s1y1)18us)siebessa\ppe 1anIaS0]

{(WU\, + ()aurxaururianiagoy)puadde 6o

{((xaL10b6'wnNabessaw + , Y134,)upuldinotianlago}
abessaw |rews payoads ay) Aejdsip pue ansuldy //

(W, + (Jaurxau-urianlagol Jpuadde 6o

{((()p1omssediabssed)Buiig mau + , SSYd,)ujpuLd N0 IaAIaS0}
{(WU\, + (Jaurxaururianiagoy)puadde 6o

{((xapiebiasn + , 43S,)upuldinotBAI9S0}

sasuodsal Aejdsip pue uonewIoul JUNOJJE puds //

(W, + (Jaurxeururianlagol)ixa) 19s 60|
{(0L} ‘.Npa’swel||im puUB(I0D, JUOOBUUODION MBU = JOAI8S0}
asuodsau [eniul Aejdsip pue JaAIas 8y 0} 108uu0) //

{

} (yoym uonngr)pasol|guonng ploa dljgnd

/x

‘abessaw pajsanbal ay) ssaooe ,
0} JoAIBS dOd By} YIm JoeIdjul ‘PaxDIfd S| UONNG Y} UBYM .

{((Bo| Jaued||0I0S MBU)ppE BUBHIUSIUOD

{(HLAIM VIHVIX3L ‘IHDIFH D01)edlvixaLr mau = Bo|

‘60| eaUYIXAL

{((obessaW)aued||0410S MBU)ppE’aURJIUSIUOD

{(HLAQIM VIHVIX3L ‘LHOIFH FDOVSSIIN Jealyixalr mou = abessaw
{((,obessa| 199,)uoungr Mau)ppe-auEdiuaiuod

MOPUIM 8} Ul SeaJe 1X8) pue uoung ayj |[elsu| //

{(]ouB4IND)ppe auBRdIUdIu0d

{(wnNoebessaw)ppe’jpuedind

{(HLAIM™ @314)pieidixal r meu = wnNabessaw

{((-enau1dy o] JaquinN abessal,)|oge mau)ppe’jeuedind
{()]louedr mau = [puedInd

Jaquinu abessaw sy} 1o} pjal} e ayeal) //

of
{

{

{(|auBdIND)ppE aUR4IUBIUOD

‘(ssed)ppe’jauedino

‘(HLAIM™ Q1314)piaidpiomssed mau = ssed
{((,plomssed,)|oge mau)ppe’|aued.ind
{()]louedr mau = [puedind

{(|auBdIND)ppE aUR4IUBIUOD

{(49sn)ppe’jauedInd

{(HLAIM™ Q1314)plaidixal mau = Jasn
{((,-1UNO2JY |IBN,)I2geT MaU)ppe’|lauedind
{()]louedr mau = [puedind

uoljewWIO}Ul JUNODODE By} Bulidlud 10} Spialy 81eal) //

{[oued.no jauedr
umo 18y} jo aued e ul Jayiabol paoe|d si Jred ealyixal r/jeqer yoes //

{(LHODIFH MOANIM ‘HLAIM ™~ MOANIM)MOPUIMBIESIOSIU}
} (hueijododejdwig o1gnd
/s
sjusuodwod |NYH paJinbal 8y} Jo |[e [[eisuy]

«f

‘19AI9S0} UOIOBUUODIBN
19AI8S 8Y} 0} UOI}OBUUOD JUBLIND BY] //

‘60| ealyIxal
Bale sy} ul pake|dsip ale Joalas 8y} wolj sebessaw Hy3- pue YO+ //

‘obessaw ealyIxal P
eale S|y} ul pake|dsip ase sabessaw |lews //

‘wnNabessaw pal4ixal
aAal18. 0} abessawW By} JO Jaquinu 8y} J8jud o} pasn //

‘ssed pjaiJpiomssedr
piomssed Junodoe dOd 8y} 18jus 0} pasn //

‘18sn plaidixel
18liuap] JUN0d9e dOd dU} J8Iue O} pasn //

‘02 = 1HDIFH IOVYSSIIN I [euly sjeaud

‘G = IHOIFH DO 1! feuyy areaud

‘0S = HLAIM VIdV.LX3 L 1l feuy areaud

sosuodsal Janlas pue sebessaw Ae|dsip 0} pasn seale 1xa} 10} suoisuswiq //

‘Gl = HL1dIM @T3id i feuy syeaud
weiBboid sy} ul pasn spjaly 18} 8y} 4O | JO 9ZIS //

{065 = LHOIFH MOANIM ‘059 = HLAIM ™ MOGNIM Ul [euly ayeaud
mopuim s,weiboid sy} Jo azis sy} isnlpe 0} senjea asay} abuey? //

} 1ebeue|ND Spuslxa jualndodaldwis sse|d olgnd

I«

a0 4Od ® ybnouyy passaooe sabessaw |lrew ,

MBIA 0] Jasn s} smojje wesboud siy] --- walpdodaidwis ,

«f

!, -Buimsxenel yodwi
¢, Juinbs podwi

