
Computer Science 134 Homework 5 - OPTIONAL
Due: 28 October 2009

Question 1. The analysis of Ethernet performance in the paper by Metcalfe and Boggs makes the simplifying
assumption that each computer will transmit during a given slot with probability 1

N where N is the number of stations
trying to transmit. In reality, we know that the probability that a station will transmit depends on the number of
collisions it has experienced rather than on N . If a computer has experienced K collisions, it chooses a random delay
value from the set {0, 1S, 2S, . . . , (2K − 1)S}. Therefore, the probability it transmits in any given slot is 1

2K .
Metcalfe and Boggs make this simplifying assumption in order to obtain a formula that approximates the expected

number of slots that will be wasted either by being left idle or because a collision occurs during the slot. Any formula
for the expected number of wasted slots that accurately reflects the actual dynamics of the exponential backoff algo-
rithm would be extremely complicated. To appreciate this, we would like you to determine a formula for the expected
number of slots that would be wasted in a single round of a very specific collision resolution scenario.

Suppose that two computers, A and B, attempt to transmit simultaneously on an idle Ethernet. The process of
collision resolution in which they will participate can be divided into “rounds.” In round 0, both stations transmit
immediately and collide. In round 1, they both randomly choose a delay from the set {0, S} and transmit after this
delay. In this round, the probability of a collision is 1

2 . If they collide again in round 1, then they engage in another
round (round 2) in which they choose delays from the set {0, S, 2S, 3S}. The total number of slots wasted during this
process will be the sum of the slots wasted in each round. It is obvious that the maximum number of slots wasted in
round K is 2K . The actual number of slots wasted in a given round, however, depends on the random delays selected.

For example, in round 1, there are four equally likely outcomes. Station A may choose delay 0 while station B
chooses S. In this case, A will immediately transmit successfully and no slots will be wasted.. Similarly, if B chooses
delay 0 and A chooses S, no slots will be wasted. On the other hand, if both A and B choose 0, they will both transmit
immediately and collide. After this collision, they will both move on to round 2 immediately, so round 1 will only
waste 1 slot. On the other hand, if the both choose a delay of S, one slot will be wasted by being left idle and another
slot will be wasted due to collision. To compute the expected number of slots wasted in round 1, we simply sum the
number of slots wasted in each of the four possible outcomes time the probability of each outcome (1

4) to obtain:

0× 1
4

+ 0× 1
4

+ 1× 1
4

+ 2× 1
4

=
3
4

That is, the expected number of slots that will be wasted during round 1 will be 3
4 .

Assuming that A and B do collide during round 1 and move on to round 2, determine the expected number of slots
that will be wasted during round 2. Justify your answer.

Question 2. The code for most of the URLList class we discussed in class is shown below.

// Class used to hold a list of Strings interpreted as web site addresses.
public class URLList {

private boolean isEmpty = false; // true if nothing in list
private String firstSite; // The first web site in the list
private URLList restOfSites; // The rest of the list of web sites

// Create an empty list
public URLList() {

isEmpty = true;
}

// Create a larger list from a new website and an existing list
public URLList(String newSite, URLList existingList) {

firstSite = newSite;
restOfSites = existingList;

}

1

Computer Science 134 Homework 5 - OPTIONAL
Due: 28 October 2009

// determines whether the collection contains a given entry
public boolean contains(String site) {

if (isEmpty) {
return false;

} else if (firstSite.equals(site)) {
return true;

} else {
return restOfSites.contains(site);

}
}

..... // a few other methods we do not care about in this question ...

}

For this question, we want you to consider several alternative definitions for contains that might have been used in
this class. For each alternative, indicate whether it would i) work fine, ii) work, but not as efficiently as the original,
iii) compile but not work correctly, or iv) not even compile. Briefly explain your answer. Hint: Although URLList is
certainly an example of a recursive class, dont panic. This question is more about if statements than about recursive
classes.

a) public boolean contains(String site) {
if (firstSite.equals(site)) {

return true;
} else if (isEmpty) {

return false;
} else {

return restOfSites.contains(site);
}

}

b) public boolean contains(String site) {
if (isEmpty) {

return false;
} else if (! restOfSites.contains(site)) {

return firstSite.equals(site);
} else {

return true;
}

}

c) public boolean contains(String site) {
return !isEmpty && (firstSite.equals(site) || restOfSites.contains(site));

}

d) public boolean contains(String site) {
if (isEmpty) {

return false;
} else if (! firstSite.equals(site)) {

return restOfSites.contains(site);
}

}

Question 3. On the following two pages, you will find definitions of two classes that could be used in the Java IM
clients you constructed in labs 4 and 5. The first is a definition of a ChatWindow class. It should look very similar

2

Computer Science 134 Homework 5 - OPTIONAL
Due: 28 October 2009

to what you used in lab. The second class is named TOCSendIMPacket. It is not quite complete. It is missing the
declarations of its instance variables, local variables, and formal parameters.

For this problem, we want you to add the missing declarations. We have placed shaded bubbles at all the points in
the code where the missing declarations could go. You will not need to fill in all of the bubbles we have provided, but
you should not need to place declarations anywhere outside these bubbles.

Each name should be declared as locally as possible. That is, if the program would work if a given name was
declared either as a local variable or an instance variable, then you should declare it as a local variable. The names for
which declarations must be provided are:

• destination

• buddysName

• message

• messageInHTML

• lessPos

• greaterPos

• original

• updated

You should be able to complete this problem without fully understanding what the classes do, but to help you out,
we provide the following explanation.

The TOCSendIMPacket constructor expects parameter values that specify the essential details required to send an
IM message, the screen name of the person the message should be sent to and the text of the message. The toString
method associated with the class then returns the packet that should be sent to the AOL server. That is, if you created
a TOCSendIMPacket by saying

packet = new TOCSendIMPacket(thommurtagh, Hi Tom);

you could later sent the appropriate text to the server by saying

toServer.out.printPacket(packet.toString());

Real IM clients encode the messages they send in HTML. The programs you created in lab did not do this. The
TOCSendIMPacket fixes this by adding some simple HTML to the messages being sent. It adds ¡html¿¡body¿ to the
beginning of each message and ¡/body¿¡/html¿ to the end. In addition, if any less than signs were included as part of
the original message, they are replaced by the characters HTML uses to encode less than signs, <. Similarly, any
greater than signs are replaced by >. As a result, if you created a TOCSendIMPacket by saying

packet = new TOCSendIMPacket(thommurtagh, Hi >Tom<);

and then later said

String text = packet.toString();

the variable text would be associated with the String:

toc2_send_im thommurtagh <html><body>Hi >Tom<</body></html>

3

Computer Science 134 Homework 5 - OPTIONAL
Due: 28 October 2009

import TOCtools.*;
import squint.*;
import javax.swing.*;

public class ChatWindow extends GUIManager {
private final int WINDOW_WIDTH = 550, WINDOW_HEIGHT = 350;

// Dimensions of GUI components for text
private final int TEXT_WIDTH = 40;
private final int TEXT_AREA_HEIGHT = 15;

// Area used to display IM messages (and other messages send by server)
private JTextArea dialogue = new JTextArea(TEXT_AREA_HEIGHT, TEXT_WIDTH);

// The connection to the server
private FLAPConnection toAOL;

// Field used to enter messages
private JTextField message = new JTextField(TEXT_WIDTH - 10);

// Buddy’s name
private String buddy;

// User’s name
private String user;

// Create a new chat window
public ChatWindow(String screenName, String buddyName, FLAPConnection connection) {

this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT, buddyName);

buddy = buddyName;
user = screenName;
toAOL = connection;

dialogue.setEditable(false);
contentPane.add(new JScrollPane(dialogue));
contentPane.add(new JLabel("Message: "));
contentPane.add(message);

}

// Send a message to the window’s buddy
public void textEntered() {

TOCServerPacket packet;
dialogue.append(user + ": " + message.getText() + "\n");
packet = new TOCSendIMPacket(buddy, message.getText());
toAOL.sendFlapData(packet.toString());

}

// Display a message received from the buddy
public void messageReceived(String message) {

dialogue.append(buddy + ": " + message + "\n");
}

}

4

Computer Science 134 Homework 5 - OPTIONAL
Due: 28 October 2009

public class TOCSendIMPacket {

// Create a new packet
public TOCSendIMPacket() {

destination = buddysName;
messageInHTML = addHTML(message);

}

// Return the packet in text form
public String toString() {

return "toc2_send_im " + destination + " \"" + messageInHTML + "\"";
}

// Place HTML tags around the message body and replace and < and > in the orignal
// message with the HTML sequences used to encode them (< and >).
private String addHTML() {

// Look for the first < and > signs
lessPos = original.indexOf("<");
greaterPos = original.indexOf(">");
updated = "";

while (lessPos != -1 || greaterPos != -1) {

// Replace the first < or > found
if (lessPos != -1 && (lessPos<greaterPos || greaterPos == -1)) {

// a < was found before any >
updated = updated + original.substring(0, lessPos) + "<";
original = original.substring(lessPos + 1);

} else {
// a > was found before any <
updated = updated + original.substring(0, greaterPos) + ">";
original = original.substring(greaterPos + 1);

}

// Look for the first remaining < and > signs
lessPos = original.indexOf("<");
greaterPos = original.indexOf(">");

}

// Add the tags to indicate the beginning and end of the HTML for the message
return "<html><body>" + updated + original + "</html></body>";

}
}

5

Computer Science 134 Homework 5 - OPTIONAL
Due: 28 October 2009

6

