
Test Program
Lovely spam! Wonderful spam!

Due: 5PM, December 2, 2005

A test program is a laboratory that you must complete on your own, without the help of others. It is a form
of take-home exam. You may consult your text, your notes, your lab work, or our on-line examples and
web pages, but use of any other source for code is forbidden. You may not discuss these problems with
anyone aside from the course instructors. You may only ask the TAs for help with hardware problems or
difficulties in retrieving your program from a disk or network.

Your goal for this assignment will be to construct a program that would be of value to anyone in the busi-
ness of sending spam. Your program will not actually send spam. It will just build a collection of email
addresses by scanning web pages and extracting any email addresses it can find in those pages.

A snapshot of what your program’s interface might look like while it is running is shown below.

The text field near the top of the window is used to enter the URL of a web site from which the user
would like the program to start searching. After entering an address in this field, the user should press the
“Start At:” button. The program will then fetch the text of the HTML file for the page and search through
the text looking for both email addresses and URLs. Internally, the program will keep collections of all
the email addresses and all the URLs it has found since starting a search. As soon as it finishes searching
one page, the program will display the URL of another page in the button at the bottom of its window.
When the user clicks on this button, the program will visit the page whose URL appears in the button,
search the page for additional URLs and email addresses, and add the addresses and URLs found to its
collections. The program displays its entire collection of email addresses in the text area in the center of
the window. It displays the current size of its collections of addresses and URLs and the total number of
pages it has searched above the text area.

CS 134 Fall 2005

1

Obviously, if you were a real spammer, you would remove the button at the bottom of the screen and just
write a loop to find as many addresses as you want once the user presses “Start At:”. We have included
the button in our design because it will make your program easier to debug and will prevent any of you
from accidentally flooding the campus network with thousands of requests for web pages in a matter of
seconds.

Getting started
To guide you in implementing this program, we will provide descriptions of the classes and methods you
should implement below. While we have provided such descriptions to guide you in other labs, for this
assignment, these descriptions are intended to serve an additional role. Since you are expected to work on
this assignment alone, we recognize that some of you may not be able to complete all components of the
program successfully. In such situations, we want you to have the reassurance of knowing that you have
completed significant portions of the assignment correctly. With this in mind, we will provide a starter
project containing classes that will enable you to independently test each of the classes we want you de-
fine.

You will find a copy of the starter folder for this assignment in a Zip file on Cortland in the Lab Materials
folder. Drag this file to your documents folder and double-click on it to unpack the contents to form a
new folder. Change the folder’s name to something like “TestProgramJones”.

Step 1: An HTTP client class
The first class we want you to define will be named HTTPConnector. It is intended to provide a simple
interface through which a program can request the text describing a web page from a web server. In fact,
the interface provided by this class will be quite simple. Its constructor will expect no parameters (and do
nothing!). It will include just one method named getWebFile which will take the URL of a web site as
a parameter and return the text received from the server as a String.

To implement getWebFile, you need to know a bit about the rules of the HTTP protocol. Fortunately,
the details you need to know are quite a bit simpler than other protocols we have studied like POP, TOC,
and SMTP.

If a program wants to retrieve the text describing a page with the URL

http://www.someserver.com/somedirectory/somefile.html

it should perform the following steps:

1. Create a NetConnection to the HTTP port (port 80) on www.someserver.com.

2. Send the following two lines to the server:

GET /somedirectory/somefile.html HTTP/1.0
host: www.someserver.com

3. Send an empty line to the server

4. Get the the string sent as a response by the server.

5. Close the connection.

Performing these steps requires some manipulation of the URL provided. In particular, you have to ex-
tract the name of the web server and the path to the desired file. You should be able to imagine how to do
this using the String indexOf and substring methods. There is, however, an easier way.

CS 134 Fall 2005

2

http://www.someserver.com/somedirectory/somefile.html
http://www.someserver.com/somedirectory/somefile.html
http://www.someserver.com
http://www.someserver.com
http://www.someserver.com
http://www.someserver.com

The Java libraries include a class named URL.1 Given a String, you can turn it into a URL using a con-
struction of the form

new URL(“http://www.someserver.com/somedirectory/somefile.html”)

The URL class includes two accessor methods named getHost and getPath that will return the server
name and file path components of the URL as String values. Working with these two methods is quite a
bit easier than extracting the server name and path from a String. As a result, we want you to define
your getWebFile method to take a URL as a parameter rather than a String.

When you think you have completed this class, you can test it by running the ConnectorTester class
provided in the starter folder. When you create a new ConnectorTester, a window will appear con-
taining a text field in which you can type the URL of a web page. If you press “Load Page” after entering
this URL, the web page requested should be displayed (in a somewhat rough form) in the body of the
window if your HTTPConnector class is functioning correctly.

Step 2: Simple String lists
Your completed program will have to manage two lists: A list of all the email address it has found and a
list of the URLs it has found. While it is sometimes convenient to represent web addresses using the URL
class, it is also possible to represent a URL as a String. As a result, we can provide the tools needed to
manage both lists by defining a class named StringList to implement a list of Strings.

The complete program will need to be able to perform four operations on string lists.

1. Obviously, when it finds a new email address or URL, your program will need a way to add it to a
list. Therefore, your StringList class should include an add method that takes the string to be
added as a parameter. If the String passed to the add method is already in the list, the add method
should do nothing. We don’t want duplicates in our lists. You may want to define a private con-
tains method to make writing the add method easier.

2. To make it easy to display information about how many web pages and email addresses have been
found, your StringList class should include a size method that returns the number of items in the list.

3. The complete program will need a way to get a URL that has not been previously visited from the list
of URLs. With this in mind, define a getNext method that will return one of the Strings in the list.
If all of the members of the list have already been returned, then getNext should return null.

4. Finally, to display all the email addresses found, your implementation of a list of Strings should pro-
vide a method that will return the entire list as a single String with the individual members separated
by new lines. Define a toString method for this purpose.

You could implement the StringList class either as a recursive class or using an array. We want you to use
an array of Strings. This means that the size of the list will be limited by the size of the array. To pro-
vide flexibility, the constructor for StringList should take the size of the array to use as a parameter. If
the array becomes full, the add method should just ignore requests to add additional Strings to the list.

When you believe you have completed the implementation of StringList, you can use the
StringListTester class included in the starter folder to test its correctness. When you create a new

CS 134 Fall 2005

3

1 While Javaʼs standard library does include a class named URL, we have actually included our own im-
plementation of URL in the starter folder. The built-in URL constructor throws an exception that would
require you to write a try-catch statement as we did when using the ImageIO class. Our version of URL
eliminates this need. Other than that, the methods of our URL class that you will use are identical to
those of the built-in class.

http://www.someserver.com/somedirectory/somefile.html
http://www.someserver.com/somedirectory/somefile.html

StringListTester using BlueJ, a window will appear with two text fields at its top. As the labels
near the text fields suggest, one is used to create a new StringList by simply typing the size of the list
into the text field and pressing return. The other is used to add an entry to the list. Again, simply type the
entry into the textArea and press return.

The contents of the entire list will be displayed in a text area in the middle of the StringListTester
window. To test your getNext method, press the button at the bottom of the window. The result re-
turned by the method will be displayed in the text field to the left of the button. Create a small list to
make sure that your class behaves correctly when the list becomes full.

Step 3: Determining HTTP response types
The final component you need to implement is a class named HTTPResponse. Objects of this class will
hold the responses your program receives from HTTP servers. The constructor for the class should expect
two parameters: a String containing the complete response from the web server, and the URL used in
the request made to the web server. For example, if you have defined a variable toServer that refers to an
HTTPConnector and a variable pageToFetch that refers to the URL of the next page to process, you could
create an HTTPResponse object to examine the page by evaluating

new HTTPResponse(toServer.getWebFile(pageToFetch), pageToFetch)

The HTTPResponse class will provide three methods to extract desired information from these responses:
type, getEmails, and getURLs. You should start by implementing the simplest method:

public String type()

The response your program receives from an HTTP server will begin with a
sequence of “header” lines describing the contents of the response. One of
these lines will begin with the text “Content-Type:”. The remainder of
this header line will contain a description of the type of data included in the
response. This method should return this type information. The complete
program will use this method to ensure that it only searches for URL and
email addresses in responses that contain HTML.

You should be able to write and debug each of the three methods included in the HTTPResponse class
independently. When you want to test any of the methods, create an instance of the HTTPResponse-
Tester class included in the starter folder. This class will load a sample HTML file included in the
starter folder and create an instance of your HTTPResponse class using this text. It displays four buttons
that can be used to see the contents of the sample HTML or to display the result obtained by invoking
your type, getURLs or getEmails method. Before trying to implement getEmails or getURLs, use the
HTTPResponseTester class to verify that your type method works correctly.

Step 4: Extracting email addresses
You should next implement a method to extract email addresses from the text of an HTML file:

public void getEmails(StringList emails)

This method will search the text of a response looking for email addresses.
It will add any addresses it finds to the StringList passed to it as a pa-
rameter.

A simple strategy will enable you to find email addresses. You really don’t even need to know anything
about HTML to do this. Since all email addresses have @ signs in them, you should start by searching for

CS 134 Fall 2005

4

an @. Once you find an @, find the first delimiter (blank, quote, new line, etc.) after the @ and the near-
est delimiter before the @. Assume everything in between is an email address. Experimentation will lead
you to ways to refine your strategy for identifying email addresses. For example, you will probably find
that you need to add characters like the less than sign and colon to your list of delimiters. You may also
want to check that the string you have extracted is an email address by making sure it contains at least one
period. It is fine, however, if your program occasionally extracts something that looks a bit like an email
address but isn’t really an email address. There is so much variety in the contents of HTML files that it is
quite hard to come up with a rule that will reliably extract exactly the email addresses from all such files.

The implementation of both getEmails and the method that extracts URLs will involve searching for
any of several delimiters including spaces, quotes, less than signs, and new lines. The built-in Java meth-
ods indexOf and lastIndexOf do a good job of searching for a single character, but they were not de-
signed to search for any of several possible delimiters simultaneously. You will, therefore, find it very
helpful to define private methods named indexOfNextDelimiter and indexOfPreviousDelimiter
which perform these functions. Since the set of useful delimiters may be different for email addresses and
URLs, these methods should each take two strings as parameters. The first string will be the string to
search. The second string will be the list of delimiters to look for. The method will use indexOf (or
lastIndexOf) to search for each delimiter separately and then return the index of the closest delimiter
found. Like indexOf, you may want to support an additional parameter indicating the position where the
search should start.

Once you think you have completed the code of the getEmails method, you can test it using the
HTTPResponse class that you used to test your type method. Just run the program and press the “Show
Emails” button. Even though HTTPResponse passes a StringList as a parameter when it invokes
your getEmails method, the class has been written so that it does not depend on the correctness of your
StringList class. It includes its own partial definition of StringList. Unlike the StringList class we
asked you to write, the version used by HTTPResponseTester is not based on arrays and therefore
would not serve as a good starting point for your own implementation of this class.

Step 5: Extracting URLs
In addition to extracting email addresses from a page, you need to extract the URLs of other pages so that
your program can automatically expand its search. For this, you should write the following method:

public void getURLs(StringList urls)

This method will search the text of a response looking for links and extract-
ing the URLs found within those links. It will add any links it finds to the
StringList passed to it as a parameter.

HTML basics
To write the getURLs method, you need to know just a little bit about the structure of HTML. In HTML
files, pieces of text that will appear as parts of a web page are surrounded by “tags” that provide instruc-
tions on how the text should be displayed. There are tags to center text, tags to make text appear in bold
face, tags to make links, and many others.

All HTML tags are composed of text surrounded by a pair of less than and greater than signs. The first
letters after the opening “<” describe the main purpose of the tag. For example “<p>” is used to indicate
the beginning of a new paragraph. A tag starting with the letter “a” is used to make a link.

Many tags include additional information between the less than and greater than signs. In particular,
when making a link, the tag needs to include the URL of the page the link should refer to. For example,
to make the text “lecture schedule” refer to the CS 134 lecture schedule, we might include the HTML text

CS 134 Fall 2005

5

lecture schedule

Unfortunately, HTML is case-insensitive and spaces and quotes are optional in many contexts. So we
could create the same link by typing

lecture schedule

or

lecture schedule

The key things to notice are that you should start by applying the toLowerCase method to the whole
page so that you don’t have to worry about case differences, that the URL will be preceded by the text
“href=”, that the URL may or may not be surrounded by quotes, and that extra blanks can be added after
the URL.

Given this brief introduction to HTML, you now know enough to write code to find and extract URLs
from a web page. Repeatedly search for the string “href=”. Whenever you find such a string, assume that
the URL for the link is everything after the equal sign (except for possibly a leading quote) up until either
a quote, a blank, a new line or a greater than sign (or any other delimiters you discover as you experiment
with your program).

Relative URLs and non-http URLs
There are two additional facts about URLs that your program must address.

Since many web sites are composed of dozens of files all stored in the same directory on the same server,
HTML provides a shorthand notation for linking to another file that is located in the same directory. For
example, both the home page for our course “http://www.cs.williams.edu/index.html” and the
lecture page used as an example above are store in the same directory. Using the abbreviated form of
URL, we can include a link from the lectures page back to the home page by including the following text

Home

rather than the more complete specification

Home

The short form of URL is called a relative URL. The longer form is called a complete URL. While your
program could translate relative URLs into complete URLs using String methods, there is an easier way
provided by the Java URL class.

When we introduced the URL class, we described how to construct a URL using a construction of the
form

new URL(“http://www.someserver.com/somedirectory/somefile.html”)

This form of URL construction can only handle complete URLs. There is a second constructor designed
to handle both complete and relative URLs. This alternate constructor accepts a String that it interprets as
a URL as its second parameter. As its first parameter, it expects the URL of the page from which the sec-
ond parameter was extracted. If the second parameter describes a relative URL, the constructor com-
pletes the relative URL using information from the first parameter. For example, if we had already de-
fined

URL pageFetched = new URL(“http://www.cs.williams.edu/lectures.html”);

the construction

CS 134 Fall 2005

6

http://www.cs.williams.edu/~cs134/lectures.html
http://www.cs.williams.edu/~cs134/lectures.html
http://www.cs.williams.edu/~cs134/lectures.html
http://www.cs.williams.edu/~cs134/lectures.html
http://www.cs.williams.edu/~cs134/lectures.html
http://www.cs.williams.edu/~cs134/lectures.html
http://ww
http://ww
http://www.cs.williams.edu/~cs134/index.html
http://www.cs.williams.edu/~cs134/index.html
http://www.someserver.com/somedirectory/somefile.html
http://www.someserver.com/somedirectory/somefile.html
http://www.cs.williams.edu/lectures.html
http://www.cs.williams.edu/lectures.html

new URL(pageFetched, “index.html”)

would be equivalent to the construction

new URL(“http://www.cs.williams.edu/index.html”)

If this form of constructor is passed a string that includes a complete URL, the first parameter will be ig-
nored. Thus

new URL(pageFetched, “http://www.yahoo.com/index.html”)

will be equivalent to

new URL(“http://www.yahoo.com/index.html”)

When the code of your addURLs method extracts a URL from the text of a web page, it should use the
URL constructor that expects two parameters. We told you that the URL that was used to fetch a document
from a web server should be included as a parameter when constructing an HTTPResponse object. That
URL should be used as the first parameter of the URL constructions performed within your addURLs
method.

The URL class provides one more handy feature. The first part of a URL indicates the type of server the
URL refers to. This portion of a URL is called the protocol. You only want to gather URLs that start with
“http”. The getProtocol method associated with a URL will return this component of the complete
URL. You should check to make sure that each URL you extract from a web page uses the “http” protocol
before adding it to the list of URLs.

Once you think you have completed the code of the getURLs method, you can test it using the HTTPRe-
sponse class that you used to test your type and getEmails methods. Just run the program and press
the “Show URLs” button.

Step 6: Putting it all together
The stater project also contains a class named EmailCollector. It implements the interface for the
complete program described in the introduction to this assignment, relying on the HTTPConnector,
StringList and HTTPResponse classes. Once you have written and tested these three classes, creating
a copy of EmailCollector should give you a complete program for harvesting email addresses from the
web.

Submission instructions
As usual, make sure you include your name and lab section in a comment in each class definition.
Connect to the server “cortand” and log in as guest.

• Select the volume “Courses” to mount and then click “OK.” (and then click “OK” again)
• Drag your project’s folder into either “Dropoff-Monday” or “Dropoff-Tuesday”.

You can submit your work up to 5 p.m. on the day the lab is due. If you submit and later discover that
your submission was flawed, you can submit again. The Mac will not let you submit again unless you
change the name of your folder slightly. Just add something to the folder name (like the word “revised”)
and the re-submission will work fine. A penalty of 10% per day will be applied for late submissions. If
your submission will be more than one day late, you must receive permission to submit your assignment
from your lab instructor.

CS 134 Fall 2005

7

http://www.cs.williams.edu/lectures.html
http://www.cs.williams.edu/lectures.html
http://www.yahoo.com/index.html
http://www.yahoo.com/index.html
http://www.yahoo.com/index.html
http://www.yahoo.com/index.html

