
Steve's Research

Stephen Freund
Williams College

Announcements

� Lab today and tomorrow

� Project meetings Wed – Fri
– Sign up for slots today if you have not
– Meet in library lab

The Blue Screen of Death

USS
Yorktown

• Smart Ship
– 27 PCs
– Windows NT 4.0

• September 21, 1997:
– data entry error caused a "Divide-By-0" error
– entire system failed
– ship dead in the water for over 2 hours

[Wired 1997]

Ariane 5 Rocket
June 4, 1996
$800 million software failure

Mars Climate Orbiter

Purpose: Collect data. Relay
signals from Mars Polar
Lander ($165M)

Failure: Smashed into Mars
(1999)

Bug: Failed to convert
English to metric units

Mars Polar Lander

Purpose: Lander to study the Mars
climate ($120M)

Failure: Smashed into Mars (2000)

Bug: Spurious signals
from sensors caused
premature engine
shutoff

North East Power Failure

Failure: Power grid failed across much of the
North East. $6B losses (2001)

Bug: Timing
bug in Ohio
power plant

Online Trading Software

Purpose: automatic high-frequency trading

Failure: DOW drops 9.2%, equity markets
collapse (2010)

Bug: Bad modeling,
and no fail-stops
to prevent
flooding market
with sell orders

Therac25 Radiation Therapy

Purpose: Computer-
controlled radiation therapy
machine

Failure: gave fatal radiation
doses to 2 cancer patients
(1986)

Bug: race condition (timing
bug)

Patriot Missile

Purpose: Intercept
incoming missiles

Failure: missed SCUD missile that killed 28
US soldiers (1991)

Bug: incorrect calculation of distance to
target

Patriot Missile

Purpose: Intercept
incoming missiles

Failure: missed SCUD missile that killed 28
US soldiers (1991)

Bug: incorrect calculation of distance to
target

Therac25 Radiation Therapy

Purpose: Computer-
controlled radiation therapy
machine

Failure: gave fatal radiation
doses to 2 cancer patients
(1986)

Bug: race condition (timing
bug)

Tesla

Purpose: Self-Driving Cars

Failure: Fatal Crash (2016)

Bug: Failed to distinguish a white tractor-
trailer crossing the highway against a bright
sky. (Other fatal accidents have followed…)

Therac25 Radiation Therapy

Purpose: Computer-
controlled radiation therapy
machine

Failure: gave fatal radiation
doses to 2 cancer patients
(1986)

Bug: race condition (timing
bug)

Tesla

Purpose: Self-Driving Cars

Failure: Fatal Crash (2016)

Bug: Failed to distinguish a white tractor-
trailer crossing the highway against a bright
sky. (Other fatal accidents have followed…)

Feb 1, 2022: Tesla recalls 54,000
vehicles due to software letting them
roll through stop signs without coming
to a complete halt.

Feb 3, 2022: Tesla recalls 800,000
vehicles due software bug related to
seat belt reminders.

April 29, 2022: Tesla recalls 63,000 cars
due to a software bug making it hard to
tell how fast the car is going.

May 11, 2022: Tesla recalls130,000 cars
due to software bug leading to
overheating in display system.

Nov 3, 2022: Tesla recalls 11,000 cars
due to bug causing vehicles to activate
forward-collision warnings and
activate the emergency brakes for no
reason.

Nov 8, 2022: Tesla recalls 40,000 cars
due to software update leading to power
steering failure.

Therac25 Radiation Therapy

Purpose: Computer-
controlled radiation therapy
machine

Failure: gave fatal radiation
doses to 2 cancer patients
(1986)

Bug: race condition (timing
bug)

Patriot Missile

Purpose: Intercept
incoming missiles

Failure: missed SCUD missile that killed 28
US soldiers (1991)

Bug: incorrect calculation of distance to
target

Heartbleed SSL Attack

Purpose: OpenSSL is
widely-used cryptographic
library.

Failure: Library could leak
secret information, including
keys. (2014)

Bug: Buffer overrun

Tesla

Purpose: Self-Driving Cars

Failure: Fatal Crash (2016)

Bug: Failed to distinguish a white tractor-
trailer crossing the highway against a bright
sky. (Other fatal accidents have followed…)

Buffer Overruns

Buffer Overruns

Buffer Overruns

void f(int array[], int index) {
array[index] = 42;

}

int main() {
int x = 100;
int elems[10] = { 1,2,3,4,5,6,7,8,9,10 };

printf("%d\n", x);
f(elems, 6);
printf("%d\n", x);
f(elems, 11);
printf("%d\n", x);

}

$ gcc array.c
$./a.out
100
100
42

C Code!

Buffer Overruns

void f(int array[], int index) {
array[index] = 42;

}

int main() {
int x = 100;
int elems[10] = { 1,2,3,4,5,6,7,8,9,10 };

printf("%d\n", x);
f(elems, 6);
printf("%d\n", x);
f(elems, 11);
printf("%d\n", x);

}

2

3

4

5

6

7

8

9

10

1

100

elems[0]

elems[1]

elems[8]

elems[9]

elems[2]

elems[3]

elems[4]

elems[5]

elems[6]

elems[7]

x

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Managing Software Complexity

Process
Tools

People

Research on Program Checkers

Identify Type of Bug
– Bad unit conversion
– Buffer overrun
– Data Race
– …

Design Checking Tool
– static or dynamic?
– precision?
– scalability?
– performance?
– usability?

Validate Technique
– check real software
– find bugs...

Good

Bad

� No algorithm can precisely compute if a
program is “Good” or “Bad”

– Undecidability of the Halting Problem [Turing 1936]

Source
Code

Source Code (Static) Checkers

Good Program Has No Buffer Overruns

Bad Program Has Buffer Overrun

Source
Code

Source Code (Static) Checkers

� Verifiable Program: No Buffer
� Not Verifiable Program: May Have Overrun

+ Catch many errors prior to testing
- Must reject some good programs...

Good

Bad

Verifiable

Not
Verifiable

Good Program Has No Buffer Overruns

Bad Program Has Buffer Overrun

Verifiable Program Can Prove No Buffer Overruns

Dynamic Checkers

+ Can discern Good vs. Bad precisely, but…

− only during the tests performed

− Performance

Good

Bad
Application

New Languages,
Programming Models

Identify Type of Bug
– Bad unit conversion
– Buffer overrun
– Data Race
– ...

Design Checking Tool
– static or dynamic?
– precision?
– scalability?
– performance?
– usability?

Validate Technique
– check real software
– find bugs...

Multithreading and Multicore CPUs

Concurrent Programming With Threads

Concurrent Programming With Threads

y_hat = a * table.column('x') + b

Divide array into four pieces and do
multiplications and additions for each

piece on a different thread

Thread 1

Thread 2
data

Amazon.com

network

Concurrent Programming With Threads

Thread 3

Thread 4

Bank
Server

Thread Interference

• Race Conditions
two concurrent unsynchronized accesses, at least one write

Thread A
...
t1 = bal;
bal = t1 + 10;
...

Thread B
...
t2 = bal;
bal = t2 – 10;
...

bal = t1 + 10

t1 = bal

bal = t2 - 10

t2 = bal

Thread A Thread B

Thread Interference

• Race Conditions
two concurrent unsynchronized accesses, at least one write

Thread A
...
t1 = bal;
bal = t1 + 10;
...

Thread B
...
t2 = bal;
bal = t2 – 10;
...

bal = t1 + 10

t1 = bal

bal = t2 - 10

t2 = bal

Thread A Thread B

Controlling Thread Interference:
Mutual Exclusion Locks

Thread A
acq(m);
t1 = bal;
bal = t1 + 10;

rel(m);

Thread B
acq(m);
t2 = bal;
bal = t2 – 10;

rel(m);

Controlling Thread Interference:
Mutual Exclusion Locks

Thread A
acq(m);
t1 = bal;
bal = t1 + 10;

rel(m);

Thread B
acq(m);
t2 = bal;
bal = t2 – 10;

rel(m);

rel(m)

bal = t1 + 10

bal = t2 - 10

t2 = bal

Thread A Thread B

t1 = bal

acq(m)

acq(m)

rel(m)

Controlling Thread Interference:
Mutual Exclusion Locks

Thread A
acq(m);
t1 = bal;
bal = t1 + 10;

rel(m);

Thread B
acq(m);
t2 = bal;
bal = t2 – 10;

rel(m); rel(m)

bal = t1 + 10

bal = t2 - 10

t2 = bal

Thread A Thread B

t1 = bal

acq(m)

acq(m)

rel(m)

class A {
guarded_by m1
int x;

requires m1, m2
void f() {
synchronized …
…

}

Data
Race on
var x

RccJava '02

Executable
Target

Data
Race on
var x

FastTrack '10, RedCard '13, SlimState '15, BigFoot '17

37

Race Freedom is not Enough...

Thread A
...
acq(m);
t1 = bal;
rel(m);

acq(m);
bal = t1 + 10;
rel(m);

Thread B
...
acq(m);
bal = 0
rel(m);

acq(m)

acq(m)

bal = 0

acq(m)

Thread A Thread B

t1 = bal

rel(m)

rel(m)

bal = t1 + 10

rel(m)

Controlling Thread Interference:
Enforce Atomicity
Atomic method must behave as if it executed serially, without

interleaved operations of other thread

atomic void copy() {
x = 0;
thread interference?
while (x < len) {
thread interference?
tmp = a[x];
thread interference?
b[x] = tmp;
thread interference?
x++;
thread interference?

}
}

Controlling Thread Interference:
Enforce Atomicity
Atomic method must behave as if it executed serially, without

interleaved operations of other thread

atomic void copy() {
x = 0;
thread interference?
while (x < len) {
thread interference?
tmp = a[x];
thread interference?
b[x] = tmp;
thread interference?
x++;
thread interference?

}
}

acquire(m)

t1 = bal

bal = t1 + 10

release(m)

...

...

acquire(m)

t1 = bal

bal = t1 + 10

release(m)

...

...

acquire(m)

t1 = bal

bal = t1 + 10

release(m)

...

...

Theory of Reduction [Lipton 76]

Serializable blocks have the pattern: R* [N] L*

R Right-mover Acquire

L Left-mover Release

B Both-mover Race-Free Access

N Non-mover Racy Access

Examples

void deposit(int n) {
synchronized(m) {

t1 = bal;
bal = t1 + n;

}
}

R
B
B
L

acquire(m)

t1 = bal

bal = t1 + n

release(m)

...

...

... (R* [N] L*)

acquire(m)

t1 = bal

bal = t1 + n

release(m)

...

...

...

Examples

void deposit(int n) {
synchronized(m) {

t1 = bal;
bal = t1 + n;

}
}

void deposit(int n) {
synchronized(m) {

t1 = bal;
}
synchronized(m) {

bal = t1 + n;
}

}

R
B
L

R
B
Lacquire(m)

t1 = bal

release(m)

R
M
L

Racquire(m)

bal = t1 + n

release(m)

M
L

...

(R* [N] L*)

acquire(m)

t1 = bal

bal = t1 + n

release(m)

...

...

...

acquire(m)

t1 = bal

bal = t1 + n

release(m)

...

...

...

class A {
race-free int x;

atomic void m(){
synchronized …
…
}
}

Executable
Target

(w/ atomic
specs)

Atomizer '04

Bohr '08

class A {
race-free int x;

atomic void m(){
synchronized …
…
}
}

Executable
Target

(w/ atomic
specs)

Atomizer '04

Anchor '20

Program
Spec.

Slow and
Buggy
Code

Traditional Software Process

Program
Spec.

Fast and
Correct

Code

Program Synthesis

Single-
threaded

Data
Structure

Thread-
safe
Data

Structure

Program Synthesis

– How to generate candidate versions?
– How to verify candidates are correct?
– How to pick most performant?

Programming Languages And
Analysis Tools

� language design
� theoretical foundations
� proving theorems
� systems development
� performance modeling
� experimental validation

