S

Steve's Research

Stephen Freund

Williams College

Announcements

* Lab today and tomorrow

* Project meetings Wed — Fri
— Sign up for slots today if you have not
— Meet in library lab

¥ STOP: 8x00000019 (xPHPPBBB0B0,8xCABEBFFO, 8XFFFFEFD4, 8xC86686688)

BAD_POOL_HEADER

CPUID: Genuine Intel 5.2.c irrgl:1f SYSUVER 8xf8e888565

D11 Base DateStmp — Name P11 Base DateStmp — Name

8801086868088 3282cB7e — ntoskrnl .exe 808016868088 3leebcecdS2 — hal .dll

8080018088 31ledB6bd4 — atapi.sys 80080860088 3lec6c?74 — SCSIPORT.SYS
802c68088 3l1ledB6bf — aic?78xx.sys 882cdfBvd 31ed237c — Disk.sys

8802418088 3lec6c?a — CLASSZ2 .SY¥S 8837chBB 3leedBa? — Ntfs.sys

fc69880808 3lec6bc?d — Floppy .S¥YS fc6a88088 3lec6bcal — Cdrom.SY¥S

fc98ab888 3lecbdf? — Fs_Rec .S¥YS £fc9c98088 3l1lec6c99 — Null .S¥YS

fc864888 31ed868b — KSecDD.SY¥S fc9cabvd 3lec6c?78 — Beep.SYS

fc6d8888 3lec6bc98 — 18842pr»t .sys fc86chBBB 3lecbc9?7 — mouclass .sys
fc874888 3lec6c94 — kbdclass .sys fc6fBB8088 31586722 — UIDEOPORT .SY¥S
feffaBBd 3lecbcbH2 — mga_mil .sys £fc8988088 3lecbcbd — vga.sys

fc7888088 3lec6ccbhb — Msfs .SYS fc4bB8B8BB 3lecb6cc? — Npfs.SYS

fefbcHBd 3leed262 — NDIS .SYS affnnnee 31£f954f7 — win32k.sys
fefad888 31f91a51 — mga.dll fec318088 3leeddB? — Fastfat .SY¥S
feb8cBBB 3lecbetbec — TDI.SYS feafffnvg 31edB8754 — nbf .sys

feacf8ee 31f138a7 — tcpip.sys feab3888 31f58a65 — netbt .sys

fcH550808088 316681a380 — elH9x.sys fcH560808088 31f8f864 — afd.sys

fc7188088 3lec6e?a — netbios .sys fc8580888 3lec6c9b — Paryort .sys
fc8780888 3lec6c9b — Parallel .S¥S £fc95490808 3lec6c9d — ParVUdm.SY¥S
fcobB8B8BB 3lec6cbl — Serial .S¥YS feadchd 31£f5663b — »rdr .sys

fea3bfd 31f7alba — mup.sys fe9dafnng 32831abe — s»v.sys

Address dword dump Build [13811] — Name

fec32d84 86143e808 80143080 8601440008 ffdffO66 88676bB2 — KSecDD.SYS
8801471c8 861440080 86014408008 ffdff68 cH38066b8 HBHBRHBHBL — ntoskrnl .exe
8801471dc 8801220008 f8883fef fOB308eeeB e133c4bd e133cddg8 — ntoskrnl .exe
80147304 8830823f0 00008023 c AHNBH34 VPNV BLBHBHBAA — ntoskrnl .exe

Restart and set the recovery options

in the system contr»ol
oy the /CRASHDEBLUG system start option.

The Blue Screen of Death

LN S8 ¥ STAR ALLIALI

AR CANADA i | o vty Mvellumd

e bag #e enoeption 08 hes scoerrwd ot SR CIETMON e Bed WTRIIO0) «
o ; ¢ Aasuda * P0000oen . This wer aulied Cogm SOBCRETINES e Wb ¥TRI(01) -
- AR S ZEALAND - ROOLES . N ey Mo puenibie b aeetises sernally

« Trewn eny bey Ue sthengt i costiee
o Press CTRLAALTAREL S0 Pewtart yowr daspeier. Bew will

4 i ufthansa
AM’»——O-— lose asy wonaend Infornatiion in all apylbestiom

B scnnmnan mexicana . " UNITED

.
_—
—_—

siininnd | I o e VARIG

%% STOP: 0x80000019 (9x00088800,0xCOBEOFFS, OxFFFFEFDA, 0xC0008860)>
BAD_POOL_HEADER

CPUID: GenuineIntel

D11 — Name

hal.di1
23 iPORT .s¥s
fok.sus

i

s
-
NeFs

S0k
3 BEAE e
558535500005

55!

£o71!

ros700 aceo:

£eshel 31758630
3 32631abe

£ "
661a30 6 3 53
e e
o3%s
65b1 — Sexial.SUS 2, xdw.sus
ump Build (13811
£eo33! 0" 5143000 s014d000 o o KSeopD
1271, 89142080 ££4fF000 = ntos
2000 f003fc0 fo30cccn 3
3 66660230 66000034 =
Restan recovery options in panel
systen stant option.

e Smart Ship
— 27 PCs
— Windows NT 4.0

 September 21, 1997:

— data entry error caused a "Divide-By-0" error
— entire system failed
— ship dead in the water for over 2 hours

[Wired 1997]

Ariane 5 Rocket

June 4, 1996
$800 million software failure

Mars Climate Orbiter

Purpose: Collect data. Relay
signals from Mars Polar
Lander ($165M)

Failure: Smashed into Mars
(1999)

Bug: Failed to convert
English to metric units

Mars Polar Lander

Purpose: Lander to study the Mars
climate ($120M)

Failure: Smashed into Mars (2000)

Bug: Spurious signals
from sensors caused
premature engine
shutoff

North East Power Failure

Failure: Power grid failed across much of the
North East. $6B losses (2001)

Bug: Timing
bug in Ohio
power plant

Blackout of August 14, 2003

Online Trading Software

Purpose: automatic high-frequency trading

Failure: DOW drops 9.2%, equity markets
collapse (2010)

Bug: Bad modeling,
and no fail-stops

to prevent

flooding market
with sell orders

DOW 9,869.62
¥ 998.50/9.2%

Therac25 Radiation Therapy

Purpose: Computer-
controlled radiation therapy
machine

Failure: gave fatal radiation
doses to 2 cancer patients
(1986)

Bug: race condition (timing
bug)

Patriot Missile

Purpose: Intercept
incoming missiles

Failure: missed SCUD missile that killed 28
US soldiers (1991)

Bug: incorrect calculation of distance to
target

Therac25 Radiation Therapy

Purpose: Computer-
controlled radiation therapy
machine

Failure: gave fatal radiation
doses to 2 cancer patients
(1986)

Bug: race condition (timing
bug)

Patriot Missile

Purpose: Intercept
incoming missiles

Failure: missed SCUD missile that killed 28
US soldiers (1991)

Bug: incorrect calculation of distance to
target

Tesla

Purpose: Self-Driving Cars

Failure: Fatal Crash (2016)

Bug: Failed to distinguish a white tractor-
trailer crossing the highway against a bright
sky. (Other fatal accidents have followed...)

Therac25 Radiation Therapy

Purpose: Computer-
controlled radiation therapy
machine

Failure: gave fatal radiation
doses to 2 cancer patients
(1986)

Bug: race condition (timing
bug)

Tesla

Purpose: Self-Driving Cars

Failure: Fatal Crash (2016)

Bug: Failed to distinguish a white tractor-
trailer crossing the highway against a bright
sky. (Other fatal accidents have followed...)

Feb 1, 2022: Tesla recalls 54,000
vehicles due to software letting them
roll through stop signs without coming
to a complete halt.

Feb 3, 2022: Tesla recalls 800,000

vehicles due software bug related to
seat belt reminders.

April 29, 2022: Tesla recalls 63,000 cars
due to a software bug making it hard to

tell how fast the car is going.

May 11, 2022: Tesla recalls130,000 cars
due to software bug leading to
overheating in display system.

Nov 3, 2022: Tesla recalls 11,000 cars
due to bug causing vehicles to activate
forward-collision warnings and
activate the emergency brakes for no
reason.

Nov 8, 2022: Tesla recalls 40,000 cars
due to software update leading to power
steering failure.

Therac25 Radiation Therapy

Purpose: Computer-
controlled radiation therapy
machine

Failure: gave fatal radiation
doses to 2 cancer patients
(1986)

Bug: race condition (timing
bug)

Patriot Missile

Purpose: Intercept
incoming missiles

Failure: missed SCUD missile that killed 28
US soldiers (1991)

Bug: incorrect calculation of distance to
target

Tesla

Purpose: Self-Driving Cars

Failure: Fatal Crash (2016)

Bug: Failed to distinguish a white tractor-
trailer crossing the highway against a bright
sky. (Other fatal accidents have followed...)

Heartbleed SSL Attack

Purpose: OpenSSL is
widely-used cryptographic
library.

Failure: Library could leak
secret information, including
keys. (2014)

Bug: Buffer overrun

Buffer Overruns

def f(array,index):
array[index] = 42

elems = make_array(1,2,3,4,5,6,7,8,9,10)
X = 100

print(x)
f(elems,6)
print(x)

100
100

Buffer Overruns

def f(array, index):
array[index] = 42

elems = make_array(1,2,3,4,5,6,7,8,9,10)
X = 100

print(x)
f(elems,11)
print(x)

100

IndexError: index 11 is out of bounds for axi
S @ with size 10

Buffer Overruns

AL

void f(int array[], int index) {
array|[index] = 42;

}

int main() {
int x = 100;
int elems[10] = { 1,2,3,4,5,6,7,8,9,10 };

printf ("%$d\n", x);
f (elems, 6);

printf ("%d\n", x); $ gcc array.c
f (elems, 11); S ./a.out
printf ("%d\n", x); 100

} 100
42

Buffer Overruns

void f (int array[], int index) {
array[index] = 42;

}

int main() {
int x = 100;
int elems[10] = { 1,2,3,4,5,6,7,8,9,10 };

printf ("$d\n", x);
f (elems, 6);
printf ("$d\n", x);
f (elems, 11);
printf ("$d\n", x);

elems|0]
elems[1]
elems|2]
elems|[3]
elems[4]
elems|[9]
elems|[6]
elems|7]
elems|8]

elems|[9]

—

O | 0 N o~ |OT | pd|W | N

—
(@)

100

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Managing Software Complexity

P Tools

Process

Research on Program Checkers

/Identify Type of Bug

Bad unit conversion
Buffer overrun
Data Race

~

/Design Checking Tool
— static or dynamic?
— precision?
— scalability?
— performance?

k — usability?

~

/

¢

/Validate Technique A
— check real software
— fi
ind bugs P

o

Source Code (Static) Checkers

Good
Source
Code = —_——
Bad
Good Program Has No Buffer Overruns
Bad Program Has Buffer Overrun

* No algorithm can precisely compute if a
program is “Good” or “Bad”

— Undecidability of the Halting Problem [Turing 1936]

Source Code (Static) Checkers

Verifiable
Source N
Code | ™ s_— | Not
Bad Verifiable
J
Good Program Has No Buffer Overruns
Bad Program Has Buffer Overrun
Verifiable Program Can Prove No Buffer Overruns

Catch many errors prior to testing
— Must reject some good programs...

Dynamic Checkers

Good

Application

—

Bad

+ Can discern Good vs. Bad precisely, but...

— only during the tests performed

— Performance

/Identify Type of Bug \
— Bad unit conversion
— Buffer overrun

— Data Race

\ — ... /
)

/ New Languages, \

Programming Models

/Design Checking Tool
— static or dynamic?
— precision?
— scalability?
— performance?

\ — usability?

\

/

¢

N

/Validate Technique A
— check real software
— fi
ind bugs P

Multithreading and Multicore CPUs

Concurrent Programming With Threads

Concurrent Programming With Threads

y hat = a * table.column('x') + b

Divide array into four pieces and do
multiplications and additions for each
piece on a different thread

Concurrent Programming With Threads

Amazon.com

Thread 1 }\

Thread 2 =

network B

Thread 3

N

Thread 4 /

data

Bank of America | Home | Personal

Personal Small Business

Bankof America 2%

Locations

Enter Your Online ID Sign In ™ Bank

@ Save this Online ID Enroll

Sign in o other services Sign-in help/options

Borrow

Online Banking

Take charge of your money with 24/7 access

>l

[+] Share website feedback

C B) R

Bank

. / Server s —

Thread Interference

Race Conditions

two concurrent unsynchronized accesses, at least one write

Thread A

tl = bal;

bal = t1 + 10;

Thread B

t2 = bal;

bal = t2 - 10;

/ Thread A

tl = bal

bal = t1 + 10

o

Thread B \

t2 = bal

bal t2 - 10

Thread Interference

Race Conditions

two concurrent unsynchronized accesses, at least one write

Thread A

tl = bal;
bal = t1 + 10;

Thread B

t2 = bal;
bal = t2 - 10;

/ Thread A

tl = bal

Thread B \

t2

= bal

bal = t1 + 10

o

bal

t2 - 10

Controlling Thread Interference:
Mutual Exclusion Locks

Thread A
acq(m) ;
tl = bal;
bal = t1 + 10;
rel (m) ;

Thread B
acq(m) ;

t2 = bal;
bal = t2 - 10;
rel (m) ;

Controlling Thread Interference:
Mutual Exclusion Locks

Thread A
acq(m) ;
tl = bal;

bal = t1 + 10;

rel (m) ;

Thread B
acq(m) ;
t2 = bal;

bal = t2 - 10;

rel (m) ;

/ Thread A

acq (m)

tl = bal

bal = t1 + 10

rel (m)

_

Thread B \

acq (m)

t2 = bal

bal

t2 - 10

rel (m)

Controlling Thread Interference:
Mutual Exclusion Locks

Thread A
acq(m) ;
tl = bal;

bal = t1 + 10;

rel (m) ;

Thread B
acq(m) ;
t2 = bal;

bal = t2 - 10;

rel (m) ;

/ Thread A

acq (m)

tl = bal

bal = t1 + 10

rel (m)

o

FastTrack '10, RedCard '13, SlimState '15, BigFoot '17

Executable
Target

Data
Race on
var X

class A {
guarded by ml
int x;

requires ml, m2
void £() {
synchronized ..

X N XS

Data
Race on
var X

35

An Introduction to Programming
with Threads

by Andrew D. Birrell

January 6, 1989

alilglitlal

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

37

Race Freedom is not Enough...

Thread A

acq(m) ;
tl = bal;
rel (m) ;

acq(m) ;
bal = tl1 + 10;
rel (m) ;

Thread B

acq(m) ;
bal = 0
rel (m) ;

/,Thread A

Thread B <\\

bal = t1 + 10

rel (m)

o

acq (m)

tl = bal

rel (m)
acq (m)
bal = 0
rel (m)

acq (m)

Controlling Thread Interference:
Enforce Atomicity

Atomic method must behave as if it executed serially, without
interleaved operations of other thread

atomic void copy () {

x = 0;

thread interference?

while (x < len) {
thread interference?
tmp = a[x];

thread interference?
b[x] = tmp;
thread interference?
X++;

thread interference?

Controlling Thread Interference:
Enforce Atomicity

Atomic method must behave as if it executed serially, without
interleaved operations of other thread

atomic void copy () {
x = 0;
while (x < len) {
tmp = al[x];
b[x] = tmp; |
f{hfia:dﬁ.—n—te%fereﬁee—?
thread-interferenee?

Theory of Reduction [Lipton 76]

acquire (m) ><
... acquire (m) acquire (m)

tl = bal tl = bal tl = bal
><bal=t1+10 bal = t1 + 10
bal = t1 + 10 ... >< release (m)
release (m) release (m) - 5o o

R Right-mover Acquire

L Left-mover Release

B Both-mover Race-Free Access

N Non-mover Racy Access

Serializable blocks have the pattern: R* [N] L*

Examples

void deposit(int n) {
synchronized (m) {

tl = bal;

bal = t1 + n:

}

s

acquire (m)

B
L

acquire (m)

tl = bal

tl = bal

bal = t1 + n

bal = t1 + n

release (m)

T~
P
/

release (m)

(R* [N] L¥)

Examples

void deposit(int n) {
synchronized (m) {
tl = bal;

bal

}

= t1 + n; "

acquire (m)

acquire (m)

tl = bal

tl = bal

bal = t1 + n

bal = t1 + n

release (m)

~
ey
/

release (m)

void deposit(int n)
synchronized

}

synchronized (m) {<
tl + n;

}

tl = bal;

R
(m) B
—

bal =

|

R

J—
\E
acquire (m) L’

tl = bal

release (m)

acquire (m)

bal = tl1 + n

release (m)

X

R
M
L
(R* [N]L*)

Atomizer '04

Executable
Target
(w/ atomic
specs)

class A {
race-free int x;

atomic wvoid m() {
synchronized ..

}

.

Atomizer '04

Executable
Target
(w/ atomic
specs)

atomic void m() {

synchronized .. »

}

.

Anchor ‘20 /
class A {
race-free int x;

Traditional Software Process

Program
Spec.

—_

—

P

‘\

Slow and

Buggy
Code

&

Program Synthesis

Program
Spec.

s

—

o

»

Fast and

Correct
Code

(

~E

Program Synthesis

Single-
threaded
Data
Structure

s

—

N

—

Thread-
safe

Data
Structure

~E

—How to generate candidate versions?
—How to verify candidates are correct?
—How to pick most performant?

Programming Languages And
Analysis Tools

* [anguage design

* theoretical foundations
* proving theorems

* systems development
* performance modeling

e experimental validation

