
Comparing Mark-and-sweep and Stop-and-copy

Garbage Collection

Benjamin Zorn

Department of Computer Science

University of Colorado at Boulder

Abstract

Stop-and-copy garbage collection has been preferred to mark-

and-sweep collection in the last decade because its collec-

tion time is proportional to the size of reachable data and

not to the memory size. This paper compares the CPU

overhead and the memory requirements of the two collec-

tion algorithms extended with generations, and finds that

mark-and-sweep collection requires at most a small amount

of additional CPU overhead (3-690) but, requires an aver-

age of 20% (and up to 40%) less memory to achieve the

same page fault rate. The comparison is based on results

obtained using trace-driven simulation with large Common

Lisp programs.

1 Introduction

Algorithms for garbage collection have evolved since Mc-

Carthy’s original work in the early 1960’s [12]. The earli-

est garbage collection algorithms were mark-and-sweep al-

gorithms which collect garbage iu two phases: the mark

phase visits all reachable objects and marks them as visited,

and the sweep phase sweeps through all objects in memory,

adding those not marked to the bee list of objects that can

be reallocated. Mark-and-sweep collection has the disad-

vantage that collection overhead is proportional to the size

of memory, which can be large in modern Lisp systems. A

third compactionphase is sometimes added to the mark-and-

sweep algorithm to improve the spatial localiity of objects,

but this phase requires object relocation and adds overhead

to the algorithm.

Stop-and-copy garbage collection (or copying collection)

was first proposed in the late 1960’s when virtual mem-

Permission to copy without fee all or part of this matertial is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that the copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-368-X/90/0006/0087 $1.50 87

ory allowed the use of large heaps that required significant

overhead to sweep [4, 91. Copying collection divides the

heap into semiapuceu, and copies reachable objects between

semispaces during collection. Because only reachable ob-

jects are visited, the overhead of copying collection is no

longer proportional to the size of memory. Copying collec-

tion has the further advantage that reachable objects are

placed contiguously when copied and thus are compacted.

Because stop-and-copy collection provides these two advan-

tages (less overhead and compaction) over simple mark-and-

sweep collection, it has been the preferred algorithm for

more than a decade and is used iu many commercial Lisp

systems [13, 6, 10, 181.

Generation garbage collection is a technique suggested

by Lieberman and Hewitt [ll] iu the early 1980’s that di-

vides a program’s heap into regions (generations) containing

objects of different ages. Generation collection focuses the

effort of garbage collection on the youngest. objects because

empirical evidence shows that young objects are the most

likely to become garbage [17, 241. There are two advan-

tages to collecting only part of a program’s total heap: first,

the collection references are localized and garbage collection

does not disrupt the reference locality of the program as

much. Second, collecting a small region takes less time and

thus collection is less likely to disrupt interactive users. As

young objects age, they are eventually copied (promoted) to

the next older generation so that they are no longer copied

during every collection. The promotion policy determines

when objects are promoted.

To be able to collect only a part of the total heap (a

single generation), the collector must maintain a record of

all pointers from other generations into the one being col-

lected (if all such pointers are not recorded, an object in

the collected generation could be incorrectly reclaimed). In

practice, generations are ordered by age, and only point-

ers forward in time (i.e., from older generations to younger

generations) need to be recorded. With this implementa-

tion, when a generation of a particular age is collected, all

younger generations must also be collected. The record of

pointers from older generations into younger generations is

called the remembered set, and on stock hardware is main-

tained by placing software tests around pointer stores that

could create an intergenerational pointer (maintaining the

write barrier). All generation collection algorithms must

promote objects, implement the remembered set, and main-

tain the write barrier.

Generation techniques can be used to enhance either

mark-and-sweep or stop-and-copy algorithms. Augmenting

a mark-and-sweep algorithm with generations eliminates the

major advantages that copying collection has over the mark-

and-sweep approach. First, generations reduce the cost of

sweeping because only a small part of the address space is

swept. Second, because the youngest generation (newspace)

is usually sized to fit completely in the available physical

memory, the compaction provided by stop-and-copy collec-

tion provides no advantage.

This paper describes and compares algorithms for mark-

and-sweep and stop-and-copy garbage collection, both aug-

mented with generations. The CPU overhead and memory

requirements of the algorithms arc estimated using trace-

driven simulation. The algorithms, simulation techniques,

and the results of the comparison are described in the fol-

lowing sections.

2 Algorithms

To allow a more controlled comparison of the two algo-

rithms, I have attempted to minimize the differences be-

tween them as much as possible. Furthermore, where differ-

ences do exist, I have attempted to idealize the implemen-

tations to provide a greater contrast in the comparison (as

with the different promotion policies).

The stop-and-copy and mark-and-sweep algorithms be-

ing compared share several characteristics. First, they are

both extended with generation collection using four gencra-

tions. For the programs simulated, the first and second gen-

erations are the most frequently collected, and only three

generations would have s&iced for these experiments. The

placement of the generations in the address space is identical

for the two algorithms-separate generations arc allocated

in non-contiguous parts of the address space and are allowed

to grow as necessary (an idealization of a real system, where

generation sizes might have to be fixed).

For both algorithms, the write barrier is maintained by

placing software tests around non-initializing pointer stores

- (initializing stores cannot create pointers forward in time

since a new object is always allocated in the youngest gen-

eration). For both algorithms, the remembered set is imple-

mented with a two-level bitmap that indicates the locations

of intergenerational pointers as described by Sobalvarro [18].

The policy for deciding when to invoke a collection is

also the same for both algorithms. Both algorithms invoke

garbage collection when a fixed amount of memory is al-

located (the allocation threshold). Basing collection on an

allocation threshold has several advantages: first, the allo-

cation behavior is independent of the collection algorithm

being used, and so each collector is invoked the same num-

ber of times. Second, the alternative of fixing the size of

newspace and invoking garbage collection when newspace

fills (a fixed-size generation policy) can lead to thrashing.

With the fired-size policy, thrashing occurs when most of

the memory in newspacc is allocated to reachable objccts-

as newspace Klls, garbage collection occurs more frequently

and recovers less garbage each time. Promotion relieves the

thrashing problem in this case, but the allocation threshold

policy eliminates it altogether.

The allocation threshold strongly influences collection

performance. Smaller thresholds cause more frequent col-

lections, which have positive and negative effects on total

performance. Frequent collections give objects less time to

become garbage between collections and hence collect more

objects, increasing the CPU overhead of collection. In addi-

tion, frequent collections increase the rate of promotion to

older generations when the promotion policy is based on an

object surviving a fixed number of collections. On the other

hand, frequent collections increase the spatial reference lo-

cality of the program by quickly reusing garbage objects.

2.1 Stop-and-copy Collection

The stop-and-copy algorithm is very simple. Important char-

acteristics of the algorithm are illustrated in Figure 1. The

figure shows how the address space iz divided into genera-

tions, and blows up the youngest generation (gen0) to show

the specific organisation of each generation.

In this stop-and-copy algorithm, objects of all types are

allocated together in a mixed heap and copied between semis-

paces within a generation during collection. Promotion of

objects to older generations is based on a copy count pol-

icy. Associated with each object is a number indicating how

many times it has been collected (its copy count). After

the copy count reaches three, the object is promoted to the

next generation (illustrated in the figure). This copy count

promotion policy is an idealized simplification of the pro-

motion policy used in commercial Lisp systems. Maintain-

88

(youngest) ..**
J

gen0 --..-....I...... root

l *
genl

PA-’

t
l .

l .
‘. l .

L1 @g$),*

: l .
l * 3

gen2 : 0.
r

l .,

before GC

0 :$#$$ garbage
0 1 live data with copy counts

fromspace

tospace

tospace

fromspace

after GC

Figure 1: Organization of a Simple Generation Stop-and-Copy Collection Algorithm. Note the roles of the semispaces fromspace and

tospace “fIip” during a garbage collection. Objects are promoted after they have been collected three times. The figure also indicates

how garbage collection compacts the reachable objects into a small region during collection, enhancing spatial locality of reference.

ing a per object count of the number of times each object

has been copied is space intensive if objects arc small (i.e.,

a cons cell is commonly two words). More complex mem-

ory organizations allow approximate copy count promotion

(e.g., bucket-brigade copying, as suggested by Shaw [17]).

This comparison assumes the best case for stop-and-copy

garbage collection, which is that individual copy counts can

be maintained without requiring extra memory.

Garbage collection algorithms also affect the cost of al-

location. Because copying algorithms allocate objects from

a semispace in a linear manner (instead of from a free list),

allocation can be performed very quickly. If the top of the

semispace is made unwritable by the operating system, as

suggested by Zorn [25] and Appel [2], then a cons cell allo-

cation, including initialization, requires four instructions on

most architectures.

2.2 Mark-and-sweep Collection

The mark-and-sweep technique described here is an enhance-

ment of the algorithm implemented in Kyoto Common Lisp

(KCL) [23]. My algorithm does not perform a compaction

phase and once allocated, objects are not relocated until

they are promoted. All mark-and-sweep algorithms need

to solve two basic problems: per-object mark bits must be

maintained, and fragmentation of vector objects (whose size

varies from object to object) must be avoided.

The mark bit can either be stored with the object or be

separated from the object and placed in a bitmap. If the bit

is stored with the object, either there has to be an extra bit

available in the object (e.g, a low bit in doubleword pointers

or a high bit if the entire address space is not used), or extra

space must be added to each object (e.g., cons cells in KCL

are three words). The advantage of storing the mark bit

with the object is that setting and testing a mark does not

require a bitmap lookup. The disadvantage of keeping the

mark with the object is that setting the bit requires a write

to the object, which results in less locality of stores dur-

ing garbage collection. I chose to implement the mark bits

in a bitmap because such an implementation enhances the

locality of the mark/test/clear operations, and also allows

an efficient implementation of sweeping, which only needs to

sweep the bitmap, instead of scanning the entire generation.

If a mark-and-sweep algorithm does not perform explicit

compaction, then vector objects, whose size varies from ob-

ject to object, can cause fragmentation problems. One so-

lution to this problem is to attempt to find a “good” fit

among the existing vectors when allocating a new vector

object. Different policies for finding a fit (e.g., first-fit, best-

89

fit) have been used and analyzed. With this approach, hag-

mentation can be reduced, but not eliminated. A second ap-

proach, used by KCL, divides vector objects into two parts:

a fixed-size vector header and a relocatable vector body.

Each generation is divided into a part containing fixed-size

objects that are only transported when they are promoted

and a part containing the relocatable bodies of vectors. All

references to a vector point to the vector header, which is

never relocated until it is promoted. All references in the

vector body point to objects in the fixed part of the gener-

ation, and so vector bodies can be relocated freely. Vector

bodies can be compacted during garbage collection if de-

sired, and so there is no problem with fragmentation. The

greatest disadvantage of this implementation is that refer-

ences to vectors must always be made indirectly through the

vector header, increasing the cost, of such references.

Figure 2 illustrates the significant aspects of the mark-

and-sweep algorithm. The figure shows that each generation

is divided into three parts containing the bitmaps, fixed ob-

jects, and relocatable objects. The fixed part further is di-

vided into areas containing objects of the same type (and

size). With this algorithm, two distinct types of collection

occur. If objects are not being promoted, a traditional mark

phase traverses objects within a generation and modifies the

bitmap to indicate reachable objects. The sweep phase then

scans the bitmap to find unmarked objects. With this im-

plementation, only the bitmap is written during a collection,

enhancing the spatial locality of writes. Furthermore, sweep-

ing, which is traditionally performed immediately after the

mark phase, is deferred with my algorithm and performed

incrementally as objects are allocated. Deferring sweeping

ties the cost of sweeping directly to the cost of allocation

and reduces the delays associated with garbage collection.

A second type of collection occurs when this mark-and-

sweep algorithm promotes objects by copying them to older

generations. Promotion presents two problems for this al-

gorithm: first, since promotion requires relocation, promo-

tion of individual objects requires updating the pointers to

the copied objects. This update phase adds overhead to

the mark and sweep phases, especially if performed for ev-

ery collection. Furthermore, maintaining approximate copy

counts using a bucket brigade or similar technique is dif?i-

cult with this algorithm because objects are not copied dur-

ing collection unless they are promoted.’ The promotion

strategy adopted by my algorithm solves these problems by

promoting an entire generation (en-musue) after it has been

collected a certain number of times (in this case three, akin

‘The possibility of reserving several bits per object in a bitmap to
maintain the copy count was considered but not evaluated.

to the stop-and-copy copy count of three). En-masse pro-

motion is less selective than copy count promotion because

it promotes young as well as older objects, and results in

significantly higher promotion rates, as shown by Zorn [24].

The two promotion strategies were chosen for comparison

because they represent. the full spectrum of possibilities.

3 Methods

Many papers have evaluated the performance of garbage col-

lection algorithms. These papers typically fall into one of

three categories: an implementation report, a description of

an analytic evaluation model, or a simulation of the algo-

rithm. The implementation report, where an algorithm is

implemented iu the context of a working Lisp system and

the performance of the algorithm is measured, is the most

common type of algorithm evaluation. One disadvantage

of this approach is that comparative evaluation, where two

very difTtrenE algorithms are compared with each other, is

almost never done. The time required to implement two

very different algorithms in the context of a complex Lisp

system is prohibitive. Another disadvantage of an imple-

mentation evaluation is that the implementation restricts

the range of parameters that can be investigated. For ex-

ample, varying the hardware page size or the processor word

size (nearly impossible in an actual implementation) might

have an important impact on performance. A final disadvan-

tage of an implementation evaluation is that certain aspects

of performance are typically not available. For example,

no implementation report has provided information about

the cache locality of garbage collection algorithms because

few hardware implementations make that information read-

ily available for analysis.

Analytic models allow us to predict the performance of

an algorithm without actually implementing it. Parameters

to the model are easily varied and their effect on perfor-

mance can be determined explicitly. Thus, analytic mod-

els are a powerful tool for studying the potential of new

algorithms. But evaluation based on analytic models also

has disadvantages. Analytic models are usually intended to

provide information about global characteristics of an algo-

rithm (e.g., the average or worst-case CPU overhead). Per-

formance measures like the page fault rate or cache miss rate

are not usually predicted by analytic models because they

depend on a long sequence of individual references whose

combined effects are too hard to model analytically. Fur-

thermore, analytic models require a high-level characteriza-

tion of program behavior. For example, the lifespan distri-

bution of objects might be modeled as an exponential dis-

90

(youngest)

gen0

genl I

9
i

gene :
:
:
:
:
: gen3 1 , .

(oldest)
i
:
:
:
:
:
:
:
:
:
:

II live objects \

! ‘. h... - J dead objects \
:
:
:

i ..--....’ ;
0’ :

symbol

L

:
: . : ---ti ‘.

Mark bitmaps

Fixed ORjects
($w$$lnto areas

Relocatable Objects
(vector bodies of
varying sizes)

Figure 2: Organization of a Generation Mark-and-Sweep Collection Algorithm. By dividing each generation into three parts,
containing the bitmaps, the fixed objects, and the relocatable parts of objects, the algorithm avoids problems of fragmentation caused
by objects with a variable size, such as vectors.

91

tribution, or the rate of allocation might be assumed to be

constant. Unfortunately, actual programs are not so well-

behaved. The most promising approach to evaluation of

garbage collection lies between implementation and analytic

models in the realm of trace-driven simulation.

Until recently, simulation has been used infrequently to

evaluate the performance of garbage collection algorithms [3,

7, 5, 141, probably because simulation is a very compute-

intensive form of evaluation. Using the reference character-

istics of a program to evaluate the performance aspects of

a particular algorithm requires simulating hundreds of mil-

lions of events. Recently, however, the availability of inex-

pensive, high-performance workstations has made simulation-

based evaluation more plausible. Just as trace-driven sim-

ulation based on address traces has allowed effective evalu-

ation of the performance of cache and virtual memory sys-

tems, trace-driven simulation at a higher level allows eval-

uation of the performance of garbage collection algorithms.

Ungar and Jackson used object-level tracing to investigate

aspects of garbage collection performance [21], as I have [24].

Peng and Sohi used trace-driven simulation to investigate

the cache performance of garbage collection algorithms 1151.

MARS (Memory Allocation and Reference Simulator) is

the simulator I have implemented and used to perform the

evaluations in this paper. It is attached to a commercial

Common Lisp system (Franz Allegro Common Lisp), and

large Lisp programs drive the algorithm simulation. MARS

provides a range of information about the performance of

the executing program and algorithm, including execution

time, measures of reference locality, allocation rates, lifes-

pan distributions, and the lengths of pauses associated with

garbage collection. MARS is also designed to facilitate the

investigation of new algorithms over a broad range of pa-

rameters.

Garbage collection simulation using MARS is driven by

events that are collected during the execution of a program

in the attached Lisp system. The events passed to MARS in-

clude object references, object allocations, and object deal-

locations. MARS has its own view of how program objects

are organized in memory, maintaining a “shadow” version

of the address space. It translates references to program

objects into references in the shadow memory without in-

terfering with the execution of the program (except to slow

it down).

This trace-driven approach has the advantage that large

Lisp programs can be used to drive the simulation. In this

paper, I use four Common Lisp applications for evaluation,

summarized in Table 1. These test programs represent a

variety of programmin g styles and application areas, includ-

ing a traditional Lisp compiler, a Scheme parallelizer using

CLOS, and a microcode compiler that does extensive net-

work flow analysis. All are programs with 10,000 or more

source lines that run for several minutes (when not traced)

on a Sun4/280 computer.

While MARS can be used to measure a variety of per-

formance characteristics, in this paper the two performance

measure of interest are the CPU overhead of the algorithms

and the main memory reference locality, as measured by the

page fault rate. The CPU costs are estimated by count-

ing the important operations (e.g., objects copied, objects

marked, etc.) performed by each algorithm and then mul-

tiplying that count by the number of instructions required

to perform the operation. With an estimate of the number

of instructions required for each algorithm, the overheads

of the different algorithms can be compared. For both al-

gorithms, a RISC architecture similar to the MIPS R2000

or SPARC is assumed. The instruction costs used in this

paper are based on SPARC instruction sequences provided

by Zorn [24].

While a measure of the relative CPU overhead is enough

information to compare the algorithms, some estimate of

the impact of the algorithms on program execution time is

also desirable. To estimate the effect of the collection algo-

rithms on the total execution time, I need an estimate of

the number of instructions executed by each test program.

Unfortunately, MARS does not provide instruction count in-

formation directly, but it does count heap references. Mea-

surements from SPUR [24], SOAR [22], and MIPS [19] indi-

cate that heap references account for approximately 12% of

all instructions in a large range of languages and programs.

Thus, a rough estimate of a program’s execution time (in

instructions) is eight times the number of heap references it

performs. While this estimate is not exact, the main goal

of the evaluation is to compare the relative performance of

the two algorithms, for which the impact on total execution

time is unnecessary.

The memory reference locality, as measured by the page

fault rate, can be computed from the stream of object refer-

ences passed to MARS. Since only the data references (and

not instruction references) are recorded, the locality mea-

sured is a conservative estimate of the true locality of the

program, although the instruction stream references have a

much higher degree of locality, and are unlikely to contribute

significantly to the page fault rate. The page fault rates are

computed using a modified stack simulation algorithm (par-

tial stack simulation)[24]. With stack simulation, if an LRU

replacement policy is assumed, the number of page faults

associated with all memory sizes can be computed with one

92

Resource ACLC
General Comments I Commercial

Curare I BMTP I RL

I Transformation 1 Bwer-Moore t Microcode cornoiler

Source lines 46,500 45,000

Execution time (se,) 410 242

Heap references (x10’) 83.7 57.9

Objects allocated (x10’) 5.1 1.43

Bytes allocated (~10~) 59.9 16.9

Common Lisp
compiler. Modern
style, many data
types.

system for Scheme
programs written
with Common Lisp
Object System.

Theorem Prover. for * class of &al
Ported from processing
Interlisp, older architectures.
style, many comes. Modern style,

many structures.

21,500 10,200

211 477

69.3 108.1

1.3 7.8

11.1 81.8

Table 1: General Information about the Test Programs. Execution times were measured on a Sun4/280 computer with 8-10 MIPS

performance and 32 megabytes of memory.

pass over the reference string. In this study, I assume a main

memory with 4096-byte pages.

4 CPU costs

Figure 3 shows the costs of stop-and-copy and mark-and-

sweep garbage collection for the two applications (the Com-

piler and RL) that require the most garbage collection. The

CPU overhead in the other applications is smaller, but fol-

lows the same trends. The figure presents the cost of garbage

collection as a percentage of additional time required to ex-

ecute the programs (independent of delays caused by page

faults). In the figure the overhead for each algorithm is di-

vided into several components: allocate refers to the cost

of object allocation, including initialization; barrier refers

to the overhead of maintaining the write barrier (described

above). For the stop-and-copy algorithm, the only other

component of the overhead is copying, the cost of trans-

porting objects between semispaces. The overhead in the

mark-and-sweep algorithm is further divided into: mark,

the cost of the mark phase, sweep, the cost of sweeping the

mark bitmap, and indirect, the additional cost of referencing

vectors due to their indirect representation.

The figure clearly shows that CPU costs can be divided

into threshold dependent and threshold independent compo-

nents. The cost of allocation is independent of the frequency

of garbage collection, as is the cost of sweeping and the cost

of an indirect representation of vectors. The fast alloca-

tion method used by the copying algorithm added about

4% to the program execution time. The mark-and-sweep

algorithm, which takes approximately eight instructions to

allocate a cons cell, incurred an 8% overhead from alloca-

tion. Sweeping adds up to 5% to the threshold independent

cost in mark-and-sweep collection and indirect vectors add

2-3% more. In any event, the figure shows that the threshold

independent costs typically account for less than half of the

total overhead of the algorithms even with a two-megabyte

allocation threshold. This result is somewhat counterintu-

itive, as one would expect the total cost to be asymptotic to

the threshold independent cost for large threshold sizes. Af-

ter discussing the threshold dependent costs, I will attempt

to explain the anomaly.

With a larger allocation threshold, garbage collection oc-

curs less frequently and more garbage is reclaimed because

more objects become garbage between collections. The thresh-

old dependent costs are those costs that decrease as more

garbage is collected (and less real data is preserved). In

copying collection, the cost transporting reachable objects

is threshold dependent. In mark-and-sweep collection, the

cost of marking objects is threshold dependent. Both algo-

rithms require that intergenerational pointers are recorded

and this cost is also threshold dependent because smaller

thresholds result in more rapid promotion and hence more

intergenerational pointers are created.

The cost of copying an object is slightly higher than the

cost of marking an object. With small threshold sizes, where

more total objects are preserved, the large threshold depen-

dent cost dominates the overhead and copying collection has

a higher total overhead. With larger threshold sizes, the

preservation costs no longer dominate the total overhead,

and mark-and-sweep collection is slightly more costly due

to the greater threshold independent costs. For both algo-

rithms, the cost of maintaining the write barrier is similar.

Intuition suggests that when thresholds become large

enough, almost all objects allocated since the last collection

will have become garbage by the time the next collection

occurs and the threshold dependent costs will drop to zero

(i.e., everything is garbage so nothing needs to be collected).

If the lifespan distribution of objects was a rapidly decreas-

ing well-behaved function (like an exponential probability

distribution), this would certainly be the case. However,

93

Lisp Compiler (stop©)

60 - allocate -A- -

iiT
vviw t

7 barrier Jt 50-

e
P

O

Ei

40-

10 -

c h h L
0 ’ I I I 1.

125 250 500 1000 2000
GC threshold (kbytes)

140

20

0

RL (stop©)

I I I I

allocate -A-

-=wiw t

barrier -X--

125 250 500 1000 2000
GC threshold (kbytes)

Lisp Compiler (mark&sweep)

7o 3

60

CT
7 50

-2
P
O 40

ci

allocate 4%- - allocate 4%- -
sweep -+ sweep -+

indirect -Q- indirect -Q-

mark ++- - mark ++- -

barrier -Q- barrier -Q-

01
125 250 500 1000 2000

140

20

0

GC threshold (kbytes)

RL (mark&sweep)
I I I I

allocate -A--

\

sweep +

indirect S

mark -x--

barrier e

Q * Y Y
a A A A

I I I I

125 250 500 1000 2000
GC threshold (kbytes)

Figure S: Cumulative CPU Overhead for Stop-and-Copy and Mark-and-Sweep Collection

94

the results in the figure suggest that the threshold depen-

dent costs are not rapidly asymptotic which in turn suggests

that object lifespan distributions are not simple exponen-

tials. Actual measurements of object lifespan distributions

obtained using MARS show that most objects are short-

lived, but a sign&ant fraction of objects live for the dura-

tion of the program in all the test programs [24]. This being

the case, arguments cl aiming that the cost of copying col-

lection can be reduced to zero with large enough memories

are not necessarily valid.

In particular, my results show that mark-and-sweep col-

lection has a higher threshold independent cost by approxi-

mately 10% for memory intensive programs. Copying collec-

tion has a higher threshold dependent cost, and with large

thresholds the threshold dependent part is still a significant

fraction of the total cost. I conclude that contrary to pop-

ular belief, copying collection does not hold a significant

performance advantage over mark-and-sweep collection and,

depending on the threshold size used, can actually have a

greater CPU overhead.

5 Memory Costs

Stack simulation allows me to determine the page fault rate

for all memory sizes in one pass over the memory reference

string. Once this data is available, the memory needs of

an algorithm can be defined as the physical memory size

required to provide a particular acceptable page fault rate.

The memory needs of the algorithms are indicated in Fig-

ure 4, where 20 page faults per second was deemed to be an

acceptable fault rate.

The figure shows that mark-and-sweep collection requires

an average of 20% less physical memory to achieve the same

page fault rate, and sometimes requires 30-45% less mem-

ory. There are definite exceptions to this result, especially

for small threshold sizes. We can understand the excep-

tions by thinking about the relationship between allocation

threshold and promotion rate.

The expected trend for the memory requirement is that

larger threshold sizes require more memory. This is true

in general, but there is a competing effect that reduces the

memory needs as threshold size increases. Collection with

smaller thresholds promotes more active data to the second

generation. References to objects promoted to the second

generation dilute the reference locality of the program and

increase its memory needs. The smallest thresholds result in

significantly higher promotion rates (10-24x of all objects

allocated) when compared with the promotion rates for the

largest threshold (3-5%). Furthermore, the en-masse pro-

motion policy used by the mark-and-sweep algorithm, which

promotes an entire generation, results in almost twice as

much promotion as the copy count policy used by the stop-

and-copy algorithm, This increased promotion leads to the

increased memory needs of mark-and-sweep collection with

small threshold sizes.

If moderate threshold sizes are considered (around 500

kilobytes), the promotion rate is reduced significantly and

references to newspace determine the memory needs of the

algorithm. Mark-and-sweep collection, which avoids divid-

ing newspace into semispaces, shows reduced memory needs.

6 Related Work

Many recent papers on copying garbage collection algorithms

have mentioned mark-and-sweep collection only in passing,

noting that because the cost is proportional to the size of

memory, mark-and-sweep collection is less efficient than copy-

ing collection [16, 2, 201. Appel, Ellis, and Li note that

the cost of mark-and-sweep collection is probably somewhat

higher than the cost of copying collection, but concede that

other costs (allocation, barriers, virtual memory overhead)

effect performance enough that copying collectors may not

necessarily be the most effective [I]. I note that the cost of

sweeping is just an extension of the cost of allocation, and

quantify that cost to be up to 5% in allocation intensive

programs.

Many papers have measured the performance of copying

algorithms augmented with generations [13, 16, 201. Few,

however, have described mark-and-sweep algorithms with

generations. Demers, Weiser and others provide the theory

for a storage model with generation garbage collection and

also describe two generation mark-and-sweep algorithms based

on their model [8]. Their collectors differ from mine in that

they never relocate objects, even when promoting them.

Because they are interested in conservative garbage collec-

tion, they make no effort to compare the performance of

their mark-and-sweep collector with generation-based copy-

ing collectors.

This paper is the first to attempt a controlled compari-

son of mark-and-sweep and stop-and-copy algorithms in the

context of generations. This paper also differs from others

because it quantifies the memory requirements for two very

different garbage collection algorithms. Stack simulation has

never been used to determine page fault rates (and indi-

rectly the memory needed for a particular page fault rate)

in the evaluation of garbage collection algorithms. Peng and

Sohi have used stack simulation for studies of garbage col-

lection cache locality [15], but they do not compare different

95

6000

Lisp Compiler

.=. 2000
u
‘;
2

2 1500

d

s
8 1000
z

500

0

2500

‘;; 2000
”
‘;
52

; 1500

i

s
$ 1000
x

500

0

125 250 500 1000 2000
GC threshold (kbytes)

BM Theorem Prover RL

mark & sweep -+

1 1 I I 1

125 250 500 1000
GC threshold (kbytes)

2000

7000

6000

‘g 5000
‘:
::
T
f

4000

2
g 3000

B
z

2000

1000

0

Curare

I I I I I

stop k eopy -A-

mark & sweep +

I I I I II

125 250 500 1000 2000
GC threshold (kbytes)

I I I I

stop & copy
mark tc sweep

I I I I

125 250 500 1000 2000
GC threshold (kbytes)

Figure 4: Memory Needs of Stop-and-Copy and Mark-and-Sweep Collection. The memory size indicated is the size required to
achieve a page fault rate of twenty page faults per second.

96

garbage collection algorithms and do not look at main mem-

ory locality.

7 Summary

This paper has outlined a mark-and-sweep collection algo-

rithm augmented with generations and compared its per-

formance using trace-driven simulation with a simple gener-

ation stop-and-copy algorithm. From the measurements, I

conclude that mark-and-sweep collection is at worst slightly

more expensive than stop-and-copy collection (3-6%) but

that the memory required by the algorithm is often signif-

icantly smaller than the copying algorithm (20% or more).

The low overhead of mark-and-sweep collection is achieved

by using generations to avoid sweeping the entire memory

and by associating sweeping with allocation. Mark-and-

sweep collection has better reference locality than stop-and-

copy collection because it avoids copying objects between

semispaces. One original reason for copying, to compact the

reachable objects, is not important in algorithms extended

with generations because the youngest generation must fit

entirely in memory for adequate virtual memory perfor-

mance. Since the whole generation needs to fit, the mark-

and-sweep algorithm requires less memory because each gen-

eration is one-half the size of copying algorithm generations.

These results should encourage future garbage collection irn-

plementors to once again consider mark-and-sweep collec-

tion as an effective algorithm.

8 Acknowledgementa

I would like to thank Paul Hilfinger, who worked with me

throughout this research. I would also like to thank Luigi

Semenzato, Jim Aragones, Jim Martin, Jim Larus, and the

conference program committee for their comments on drafts

of this paper. Finally, David Kotz was very helpful to me

during the preparation of the plots in this paper. This

work was partially supported by DARPA contract number

N00039-85-C-0269 (SPUR).

References

[l] Andrew Appel, John ElIis, and Kai Li. Real-time con-
current collection on stock multiprocessors. In SIG-
PLAN’88 Conference on Programming Language De-
sign and Implementation, pages 11-20, Atlanta, GA,
June 1988. SIGPLAN, ACM Press.

[2] Andrew W. Appel. Simple generational garbage collec-
tion and fast allocation. Software-Practice and Ezpe-
rience, 19(2):171-183, February 1989.

[3] H. D. Baecker. Garbage collection for virtual mem-
ory computer systems. Communications of the ACM,
15(11):981-986, November 1972.

[4] C. J. Cheney. A nonrecursive list compacting algorithm.
Communications of the ACM, 13(11):677-678, Novem-
ber 1970.

[5] Jacques Cohen and Alexandru Nicolau. Comparison
of compacting algorithms for garbage collection. ACM
Transactions on Programming Languages and Systems,
5(4):532-553, October 1983.

[6] Robert Courts. Improving locality of reference in a
garbage-collecting memory management system. Com-
munications of the ACM, 31(9):1128-1138, September
1988.

[7] D. Julian M. Davies. Memory occupancy patterns in
garbage collection systems. Communications of the
ACM, 27(8):819-825, August 1984.

[8] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm,
Daniel Bobrow, and Scott Shenker. Combining genera-
tional and conservative garbage collection: Framework
and implementations. In Conference Record of the Sev-
enteenth ACM Symposium on Principles of Program-
ming Languages, pages 261-269, January 1990.

[9] Robert R. Fenichel and Jerome C. Yochelson. A Lisp
garbage-collector for virtual memory computer sys-
tems. Communications of the ACM, 12(11):611-612,
November 1969.

[lo] Franz Incorporated. Allegro Common Lisp User Guide,
Release 3.0 (beta) edition, April 1988.

[ll] Henry Lieberman and Carl Hewitt. A real-time garbage
collector based on the lifetimes of objects. Communi-
cations of the ACM, 26(6):419-429, June 1983.

[12] John McCarthy. Recursive functions of symbolic ex-
pressions and their computations by machine, part I.
Communications of the ACM, 3(4):184-195, April 1960.

[13] David A. Moon. Garbage collection in a large Lisp
system. In Conference Record of the 1984 ACM Sym-
posium on LISP and Functional Programming, pages
235-246, Austin, Texas, August 1984.

[14] I. A. Newman and M. C. Woodward. Alternative ap-
proaches to multiprocessor garbage collection. In Pro-
ceedings of the 1982 International Conference on Par-
allel Processing, pages 205-210, Ohio State University,
Columbus, OH, August 1982. IEEE.

[l5] C.-J. Peng and G. S. Sohi. Cache memory design con-
siderations to support languages with dynamic heap
allocation. Technical Report 860, Computer Sciences
Dept., Univ. of Wisconsin-Madison, July 1989.

[lS] Robert A. Shaw. Improving garbage collector perfor-
mance in virtual memory. Technical Report CSL-TR-
87-323, Stanford University, March 1987.

[17] Robert A. Shaw. Empirical Analysis of a Lisp System.
PhD thesis, Stanford University, Stanford, CA, Febru-
ary 1988. Also appears as Computer Systems Labora-
tory tech report CSL-TR-88-351.

97

[18] Patrick G. Sobalvarro. A lifetime-based garbage col-
lector for LISP systems on general purpose computers.
Bachelor’s thesis, MIT, 1988.

[19] George Taylor. Ratio of MIPS R3000 instructions
to heap references. Personal communication, October
1989.

[ZO] David Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. In
SIGSOFT/SIGPLAN Practical Programming Environ-
ments Conference, pages 157-167, April 1984.

[21] David Ungar and Prank Jackson. Tenuring policies for
generation-based storage reclamation. In OOPSLA’88
Conference Proceedings, pages l-17. ACM, September
1988.

[22] David M. Ungar. The Design and Evaluation of A High
Performance Smalltalk System. PhD thesis, University
of California at Berkeley, Berkeley, CA, March 1986.
Also appears as tech report UCB/CSD 86/287.

(231 Taiichi Yuasa and Masami Hagiya. The KCL Report.
Research Institute for Mathematical Sciences, Univer-
sity of Kyoto.

[24] Benjamin Zorn. Comparative Performance Evaluation
of Garbage Collection Algorithms. PhD thesis, Univer-
sity of California at Berkeley, Berkeley, CA, November
1989. Also appears as tech report UCB/CSD 89/544.

[25] Benjamin Zorn, Paul Hilfinger, Kinson Ho, and James
Larus. SPUR Lisp: Design and implementation. Tech-
nical Report UCB/CSD 87/373, Computer Science Di-
vision (EECS), University of California, Berkeley, Oc-
tober 1987.

98

