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Abstract 

Stop-and-copy garbage collection has been preferred to mark- 

and-sweep collection in the last decade because its collec- 

tion time is proportional to the size of reachable data and 

not to the memory size. This paper compares the CPU 

overhead and the memory requirements of the two collec- 

tion algorithms extended with generations, and finds that 

mark-and-sweep collection requires at most a small amount 

of additional CPU overhead (3-690) but, requires an aver- 

age of 20% (and up to 40%) less memory to achieve the 

same page fault rate. The comparison is based on results 

obtained using trace-driven simulation with large Common 

Lisp programs. 

1 Introduction 

Algorithms for garbage collection have evolved since Mc- 

Carthy’s original work in the early 1960’s [12]. The earli- 

est garbage collection algorithms were mark-and-sweep al- 

gorithms which collect garbage iu two phases: the mark 

phase visits all reachable objects and marks them as visited, 

and the sweep phase sweeps through all objects in memory, 

adding those not marked to the bee list of objects that can 

be reallocated. Mark-and-sweep collection has the disad- 

vantage that collection overhead is proportional to the size 

of memory, which can be large in modern Lisp systems. A 

third compactionphase is sometimes added to the mark-and- 

sweep algorithm to improve the spatial localiity of objects, 

but this phase requires object relocation and adds overhead 

to the algorithm. 

Stop-and-copy garbage collection (or copying collection) 

was first proposed in the late 1960’s when virtual mem- 

Permission to copy without fee all or part of this matertial is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that the copying is by 
permission of the Association for Computing Machinery. To copy other- 
wise, or to republish, requires a fee and/or specific permission. 

0 1990 ACM 089791-368-X/90/0006/0087 $1.50 87 

ory allowed the use of large heaps that required significant 

overhead to sweep [4, 91. Copying collection divides the 

heap into semiapuceu, and copies reachable objects between 

semispaces during collection. Because only reachable ob- 

jects are visited, the overhead of copying collection is no 

longer proportional to the size of memory. Copying collec- 

tion has the further advantage that reachable objects are 

placed contiguously when copied and thus are compacted. 

Because stop-and-copy collection provides these two advan- 

tages (less overhead and compaction) over simple mark-and- 

sweep collection, it has been the preferred algorithm for 

more than a decade and is used iu many commercial Lisp 

systems [13, 6, 10, 181. 

Generation garbage collection is a technique suggested 

by Lieberman and Hewitt [ll] iu the early 1980’s that di- 

vides a program’s heap into regions (generations) containing 

objects of different ages. Generation collection focuses the 

effort of garbage collection on the youngest. objects because 

empirical evidence shows that young objects are the most 

likely to become garbage [17, 241. There are two advan- 

tages to collecting only part of a program’s total heap: first, 

the collection references are localized and garbage collection 

does not disrupt the reference locality of the program as 

much. Second, collecting a small region takes less time and 

thus collection is less likely to disrupt interactive users. As 

young objects age, they are eventually copied (promoted) to 

the next older generation so that they are no longer copied 

during every collection. The promotion policy determines 

when objects are promoted. 

To be able to collect only a part of the total heap (a 

single generation), the collector must maintain a record of 

all pointers from other generations into the one being col- 

lected (if all such pointers are not recorded, an object in 

the collected generation could be incorrectly reclaimed). In 

practice, generations are ordered by age, and only point- 

ers forward in time (i.e., from older generations to younger 

generations) need to be recorded. With this implementa- 



tion, when a generation of a particular age is collected, all 

younger generations must also be collected. The record of 

pointers from older generations into younger generations is 

called the remembered set, and on stock hardware is main- 

tained by placing software tests around pointer stores that 

could create an intergenerational pointer (maintaining the 

write barrier). All generation collection algorithms must 

promote objects, implement the remembered set, and main- 

tain the write barrier. 

Generation techniques can be used to enhance either 

mark-and-sweep or stop-and-copy algorithms. Augmenting 

a mark-and-sweep algorithm with generations eliminates the 

major advantages that copying collection has over the mark- 

and-sweep approach. First, generations reduce the cost of 

sweeping because only a small part of the address space is 

swept. Second, because the youngest generation (newspace) 

is usually sized to fit completely in the available physical 

memory, the compaction provided by stop-and-copy collec- 

tion provides no advantage. 

This paper describes and compares algorithms for mark- 

and-sweep and stop-and-copy garbage collection, both aug- 

mented with generations. The CPU overhead and memory 

requirements of the algorithms arc estimated using trace- 

driven simulation. The algorithms, simulation techniques, 

and the results of the comparison are described in the fol- 

lowing sections. 

2 Algorithms 

To allow a more controlled comparison of the two algo- 

rithms, I have attempted to minimize the differences be- 

tween them as much as possible. Furthermore, where differ- 

ences do exist, I have attempted to idealize the implemen- 

tations to provide a greater contrast in the comparison (as 

with the different promotion policies). 

The stop-and-copy and mark-and-sweep algorithms be- 

ing compared share several characteristics. First, they are 

both extended with generation collection using four gencra- 

tions. For the programs simulated, the first and second gen- 

erations are the most frequently collected, and only three 

generations would have s&iced for these experiments. The 

placement of the generations in the address space is identical 

for the two algorithms-separate generations arc allocated 

in non-contiguous parts of the address space and are allowed 

to grow as necessary (an idealization of a real system, where 

generation sizes might have to be fixed). 

For both algorithms, the write barrier is maintained by 

placing software tests around non-initializing pointer stores 

- (initializing stores cannot create pointers forward in time 

since a new object is always allocated in the youngest gen- 

eration). For both algorithms, the remembered set is imple- 

mented with a two-level bitmap that indicates the locations 

of intergenerational pointers as described by Sobalvarro [18]. 

The policy for deciding when to invoke a collection is 

also the same for both algorithms. Both algorithms invoke 

garbage collection when a fixed amount of memory is al- 

located (the allocation threshold). Basing collection on an 

allocation threshold has several advantages: first, the allo- 

cation behavior is independent of the collection algorithm 

being used, and so each collector is invoked the same num- 

ber of times. Second, the alternative of fixing the size of 

newspace and invoking garbage collection when newspace 

fills (a fixed-size generation policy) can lead to thrashing. 

With the fired-size policy, thrashing occurs when most of 

the memory in newspacc is allocated to reachable objccts- 

as newspace Klls, garbage collection occurs more frequently 

and recovers less garbage each time. Promotion relieves the 

thrashing problem in this case, but the allocation threshold 

policy eliminates it altogether. 

The allocation threshold strongly influences collection 

performance. Smaller thresholds cause more frequent col- 

lections, which have positive and negative effects on total 

performance. Frequent collections give objects less time to 

become garbage between collections and hence collect more 

objects, increasing the CPU overhead of collection. In addi- 

tion, frequent collections increase the rate of promotion to 

older generations when the promotion policy is based on an 

object surviving a fixed number of collections. On the other 

hand, frequent collections increase the spatial reference lo- 

cality of the program by quickly reusing garbage objects. 

2.1 Stop-and-copy Collection 

The stop-and-copy algorithm is very simple. Important char- 

acteristics of the algorithm are illustrated in Figure 1. The 

figure shows how the address space iz divided into genera- 

tions, and blows up the youngest generation (gen0) to show 

the specific organisation of each generation. 

In this stop-and-copy algorithm, objects of all types are 

allocated together in a mixed heap and copied between semis- 

paces within a generation during collection. Promotion of 

objects to older generations is based on a copy count pol- 

icy. Associated with each object is a number indicating how 

many times it has been collected (its copy count). After 

the copy count reaches three, the object is promoted to the 

next generation (illustrated in the figure). This copy count 

promotion policy is an idealized simplification of the pro- 

motion policy used in commercial Lisp systems. Maintain- 
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Figure 1: Organization of a Simple Generation Stop-and-Copy Collection Algorithm. Note the roles of the semispaces fromspace and 

tospace “fIip” during a garbage collection. Objects are promoted after they have been collected three times. The figure also indicates 

how garbage collection compacts the reachable objects into a small region during collection, enhancing spatial locality of reference. 

ing a per object count of the number of times each object 

has been copied is space intensive if objects arc small (i.e., 

a cons cell is commonly two words). More complex mem- 

ory organizations allow approximate copy count promotion 

(e.g., bucket-brigade copying, as suggested by Shaw [17]). 

This comparison assumes the best case for stop-and-copy 

garbage collection, which is that individual copy counts can 

be maintained without requiring extra memory. 

Garbage collection algorithms also affect the cost of al- 

location. Because copying algorithms allocate objects from 

a semispace in a linear manner (instead of from a free list), 

allocation can be performed very quickly. If the top of the 

semispace is made unwritable by the operating system, as 

suggested by Zorn [25] and Appel [2], then a cons cell allo- 

cation, including initialization, requires four instructions on 

most architectures. 

2.2 Mark-and-sweep Collection 

The mark-and-sweep technique described here is an enhance- 

ment of the algorithm implemented in Kyoto Common Lisp 

(KCL) [23]. My algorithm does not perform a compaction 

phase and once allocated, objects are not relocated until 

they are promoted. All mark-and-sweep algorithms need 

to solve two basic problems: per-object mark bits must be 

maintained, and fragmentation of vector objects (whose size 

varies from object to object) must be avoided. 

The mark bit can either be stored with the object or be 

separated from the object and placed in a bitmap. If the bit 

is stored with the object, either there has to be an extra bit 

available in the object (e.g, a low bit in doubleword pointers 

or a high bit if the entire address space is not used), or extra 

space must be added to each object (e.g., cons cells in KCL 

are three words). The advantage of storing the mark bit 

with the object is that setting and testing a mark does not 

require a bitmap lookup. The disadvantage of keeping the 

mark with the object is that setting the bit requires a write 

to the object, which results in less locality of stores dur- 

ing garbage collection. I chose to implement the mark bits 

in a bitmap because such an implementation enhances the 

locality of the mark/test/clear operations, and also allows 

an efficient implementation of sweeping, which only needs to 

sweep the bitmap, instead of scanning the entire generation. 

If a mark-and-sweep algorithm does not perform explicit 

compaction, then vector objects, whose size varies from ob- 

ject to object, can cause fragmentation problems. One so- 

lution to this problem is to attempt to find a “good” fit 

among the existing vectors when allocating a new vector 

object. Different policies for finding a fit (e.g., first-fit, best- 
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fit) have been used and analyzed. With this approach, hag- 

mentation can be reduced, but not eliminated. A second ap- 

proach, used by KCL, divides vector objects into two parts: 

a fixed-size vector header and a relocatable vector body. 

Each generation is divided into a part containing fixed-size 

objects that are only transported when they are promoted 

and a part containing the relocatable bodies of vectors. All 

references to a vector point to the vector header, which is 

never relocated until it is promoted. All references in the 

vector body point to objects in the fixed part of the gener- 

ation, and so vector bodies can be relocated freely. Vector 

bodies can be compacted during garbage collection if de- 

sired, and so there is no problem with fragmentation. The 

greatest disadvantage of this implementation is that refer- 

ences to vectors must always be made indirectly through the 

vector header, increasing the cost, of such references. 

Figure 2 illustrates the significant aspects of the mark- 

and-sweep algorithm. The figure shows that each generation 

is divided into three parts containing the bitmaps, fixed ob- 

jects, and relocatable objects. The fixed part further is di- 

vided into areas containing objects of the same type (and 

size). With this algorithm, two distinct types of collection 

occur. If objects are not being promoted, a traditional mark 

phase traverses objects within a generation and modifies the 

bitmap to indicate reachable objects. The sweep phase then 

scans the bitmap to find unmarked objects. With this im- 

plementation, only the bitmap is written during a collection, 

enhancing the spatial locality of writes. Furthermore, sweep- 

ing, which is traditionally performed immediately after the 

mark phase, is deferred with my algorithm and performed 

incrementally as objects are allocated. Deferring sweeping 

ties the cost of sweeping directly to the cost of allocation 

and reduces the delays associated with garbage collection. 

A second type of collection occurs when this mark-and- 

sweep algorithm promotes objects by copying them to older 

generations. Promotion presents two problems for this al- 

gorithm: first, since promotion requires relocation, promo- 

tion of individual objects requires updating the pointers to 

the copied objects. This update phase adds overhead to 

the mark and sweep phases, especially if performed for ev- 

ery collection. Furthermore, maintaining approximate copy 

counts using a bucket brigade or similar technique is dif?i- 

cult with this algorithm because objects are not copied dur- 

ing collection unless they are promoted.’ The promotion 

strategy adopted by my algorithm solves these problems by 

promoting an entire generation (en-musue) after it has been 

collected a certain number of times (in this case three, akin 

‘The possibility of reserving several bits per object in a bitmap to 
maintain the copy count was considered but not evaluated. 

to the stop-and-copy copy count of three). En-masse pro- 

motion is less selective than copy count promotion because 

it promotes young as well as older objects, and results in 

significantly higher promotion rates, as shown by Zorn [24]. 

The two promotion strategies were chosen for comparison 

because they represent. the full spectrum of possibilities. 

3 Methods 

Many papers have evaluated the performance of garbage col- 

lection algorithms. These papers typically fall into one of 

three categories: an implementation report, a description of 

an analytic evaluation model, or a simulation of the algo- 

rithm. The implementation report, where an algorithm is 

implemented iu the context of a working Lisp system and 

the performance of the algorithm is measured, is the most 

common type of algorithm evaluation. One disadvantage 

of this approach is that comparative evaluation, where two 

very difTtrenE algorithms are compared with each other, is 

almost never done. The time required to implement two 

very different algorithms in the context of a complex Lisp 

system is prohibitive. Another disadvantage of an imple- 

mentation evaluation is that the implementation restricts 

the range of parameters that can be investigated. For ex- 

ample, varying the hardware page size or the processor word 

size (nearly impossible in an actual implementation) might 

have an important impact on performance. A final disadvan- 

tage of an implementation evaluation is that certain aspects 

of performance are typically not available. For example, 

no implementation report has provided information about 

the cache locality of garbage collection algorithms because 

few hardware implementations make that information read- 

ily available for analysis. 

Analytic models allow us to predict the performance of 

an algorithm without actually implementing it. Parameters 

to the model are easily varied and their effect on perfor- 

mance can be determined explicitly. Thus, analytic mod- 

els are a powerful tool for studying the potential of new 

algorithms. But evaluation based on analytic models also 

has disadvantages. Analytic models are usually intended to 

provide information about global characteristics of an algo- 

rithm (e.g., the average or worst-case CPU overhead). Per- 

formance measures like the page fault rate or cache miss rate 

are not usually predicted by analytic models because they 

depend on a long sequence of individual references whose 

combined effects are too hard to model analytically. Fur- 

thermore, analytic models require a high-level characteriza- 

tion of program behavior. For example, the lifespan distri- 

bution of objects might be modeled as an exponential dis- 
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tribution, or the rate of allocation might be assumed to be 

constant. Unfortunately, actual programs are not so well- 

behaved. The most promising approach to evaluation of 

garbage collection lies between implementation and analytic 

models in the realm of trace-driven simulation. 

Until recently, simulation has been used infrequently to 

evaluate the performance of garbage collection algorithms [3, 

7, 5, 141, probably because simulation is a very compute- 

intensive form of evaluation. Using the reference character- 

istics of a program to evaluate the performance aspects of 

a particular algorithm requires simulating hundreds of mil- 

lions of events. Recently, however, the availability of inex- 

pensive, high-performance workstations has made simulation- 

based evaluation more plausible. Just as trace-driven sim- 

ulation based on address traces has allowed effective evalu- 

ation of the performance of cache and virtual memory sys- 

tems, trace-driven simulation at a higher level allows eval- 

uation of the performance of garbage collection algorithms. 

Ungar and Jackson used object-level tracing to investigate 

aspects of garbage collection performance [21], as I have [24]. 

Peng and Sohi used trace-driven simulation to investigate 

the cache performance of garbage collection algorithms 1151. 

MARS (Memory Allocation and Reference Simulator) is 

the simulator I have implemented and used to perform the 

evaluations in this paper. It is attached to a commercial 

Common Lisp system (Franz Allegro Common Lisp), and 

large Lisp programs drive the algorithm simulation. MARS 

provides a range of information about the performance of 

the executing program and algorithm, including execution 

time, measures of reference locality, allocation rates, lifes- 

pan distributions, and the lengths of pauses associated with 

garbage collection. MARS is also designed to facilitate the 

investigation of new algorithms over a broad range of pa- 

rameters. 

Garbage collection simulation using MARS is driven by 

events that are collected during the execution of a program 

in the attached Lisp system. The events passed to MARS in- 

clude object references, object allocations, and object deal- 

locations. MARS has its own view of how program objects 

are organized in memory, maintaining a “shadow” version 

of the address space. It translates references to program 

objects into references in the shadow memory without in- 

terfering with the execution of the program (except to slow 

it down). 

This trace-driven approach has the advantage that large 

Lisp programs can be used to drive the simulation. In this 

paper, I use four Common Lisp applications for evaluation, 

summarized in Table 1. These test programs represent a 

variety of programmin g styles and application areas, includ- 

ing a traditional Lisp compiler, a Scheme parallelizer using 

CLOS, and a microcode compiler that does extensive net- 

work flow analysis. All are programs with 10,000 or more 

source lines that run for several minutes (when not traced) 

on a Sun4/280 computer. 

While MARS can be used to measure a variety of per- 

formance characteristics, in this paper the two performance 

measure of interest are the CPU overhead of the algorithms 

and the main memory reference locality, as measured by the 

page fault rate. The CPU costs are estimated by count- 

ing the important operations (e.g., objects copied, objects 

marked, etc.) performed by each algorithm and then mul- 

tiplying that count by the number of instructions required 

to perform the operation. With an estimate of the number 

of instructions required for each algorithm, the overheads 

of the different algorithms can be compared. For both al- 

gorithms, a RISC architecture similar to the MIPS R2000 

or SPARC is assumed. The instruction costs used in this 

paper are based on SPARC instruction sequences provided 

by Zorn [24]. 

While a measure of the relative CPU overhead is enough 

information to compare the algorithms, some estimate of 

the impact of the algorithms on program execution time is 

also desirable. To estimate the effect of the collection algo- 

rithms on the total execution time, I need an estimate of 

the number of instructions executed by each test program. 

Unfortunately, MARS does not provide instruction count in- 

formation directly, but it does count heap references. Mea- 

surements from SPUR [24], SOAR [22], and MIPS [19] indi- 

cate that heap references account for approximately 12% of 

all instructions in a large range of languages and programs. 

Thus, a rough estimate of a program’s execution time (in 

instructions) is eight times the number of heap references it 

performs. While this estimate is not exact, the main goal 

of the evaluation is to compare the relative performance of 

the two algorithms, for which the impact on total execution 

time is unnecessary. 

The memory reference locality, as measured by the page 

fault rate, can be computed from the stream of object refer- 

ences passed to MARS. Since only the data references (and 

not instruction references) are recorded, the locality mea- 

sured is a conservative estimate of the true locality of the 

program, although the instruction stream references have a 

much higher degree of locality, and are unlikely to contribute 

significantly to the page fault rate. The page fault rates are 

computed using a modified stack simulation algorithm (par- 

tial stack simulation)[24]. With stack simulation, if an LRU 

replacement policy is assumed, the number of page faults 

associated with all memory sizes can be computed with one 
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I Transformation 1 Bwer-Moore t Microcode cornoiler 

Source lines 46,500 45,000 

Execution time (se,) 410 242 

Heap references (x10’) 83.7 57.9 

Objects allocated (x10’) 5.1 1.43 

Bytes allocated (~10~) 59.9 16.9 

Common Lisp 
compiler. Modern 
style, many data 
types. 

system for Scheme 
programs written 
with Common Lisp 
Object System. 

Theorem Prover. for * class of &al 
Ported from processing 
Interlisp, older architectures. 
style, many comes. Modern style, 

many structures. 

21,500 10,200 

211 477 

69.3 108.1 

1.3 7.8 

11.1 81.8 

Table 1: General Information about the Test Programs. Execution times were measured on a Sun4/280 computer with 8-10 MIPS 

performance and 32 megabytes of memory. 

pass over the reference string. In this study, I assume a main 

memory with 4096-byte pages. 

4 CPU costs 

Figure 3 shows the costs of stop-and-copy and mark-and- 

sweep garbage collection for the two applications (the Com- 

piler and RL) that require the most garbage collection. The 

CPU overhead in the other applications is smaller, but fol- 

lows the same trends. The figure presents the cost of garbage 

collection as a percentage of additional time required to ex- 

ecute the programs (independent of delays caused by page 

faults). In the figure the overhead for each algorithm is di- 

vided into several components: allocate refers to the cost 

of object allocation, including initialization; barrier refers 

to the overhead of maintaining the write barrier (described 

above). For the stop-and-copy algorithm, the only other 

component of the overhead is copying, the cost of trans- 

porting objects between semispaces. The overhead in the 

mark-and-sweep algorithm is further divided into: mark, 

the cost of the mark phase, sweep, the cost of sweeping the 

mark bitmap, and indirect, the additional cost of referencing 

vectors due to their indirect representation. 

The figure clearly shows that CPU costs can be divided 

into threshold dependent and threshold independent compo- 

nents. The cost of allocation is independent of the frequency 

of garbage collection, as is the cost of sweeping and the cost 

of an indirect representation of vectors. The fast alloca- 

tion method used by the copying algorithm added about 

4% to the program execution time. The mark-and-sweep 

algorithm, which takes approximately eight instructions to 

allocate a cons cell, incurred an 8% overhead from alloca- 

tion. Sweeping adds up to 5% to the threshold independent 

cost in mark-and-sweep collection and indirect vectors add 

2-3% more. In any event, the figure shows that the threshold 

independent costs typically account for less than half of the 

total overhead of the algorithms even with a two-megabyte 

allocation threshold. This result is somewhat counterintu- 

itive, as one would expect the total cost to be asymptotic to 

the threshold independent cost for large threshold sizes. Af- 

ter discussing the threshold dependent costs, I will attempt 

to explain the anomaly. 

With a larger allocation threshold, garbage collection oc- 

curs less frequently and more garbage is reclaimed because 

more objects become garbage between collections. The thresh- 

old dependent costs are those costs that decrease as more 

garbage is collected (and less real data is preserved). In 

copying collection, the cost transporting reachable objects 

is threshold dependent. In mark-and-sweep collection, the 

cost of marking objects is threshold dependent. Both algo- 

rithms require that intergenerational pointers are recorded 

and this cost is also threshold dependent because smaller 

thresholds result in more rapid promotion and hence more 

intergenerational pointers are created. 

The cost of copying an object is slightly higher than the 

cost of marking an object. With small threshold sizes, where 

more total objects are preserved, the large threshold depen- 

dent cost dominates the overhead and copying collection has 

a higher total overhead. With larger threshold sizes, the 

preservation costs no longer dominate the total overhead, 

and mark-and-sweep collection is slightly more costly due 

to the greater threshold independent costs. For both algo- 

rithms, the cost of maintaining the write barrier is similar. 

Intuition suggests that when thresholds become large 

enough, almost all objects allocated since the last collection 

will have become garbage by the time the next collection 

occurs and the threshold dependent costs will drop to zero 

(i.e., everything is garbage so nothing needs to be collected). 

If the lifespan distribution of objects was a rapidly decreas- 

ing well-behaved function (like an exponential probability 

distribution), this would certainly be the case. However, 
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the results in the figure suggest that the threshold depen- 

dent costs are not rapidly asymptotic which in turn suggests 

that object lifespan distributions are not simple exponen- 

tials. Actual measurements of object lifespan distributions 

obtained using MARS show that most objects are short- 

lived, but a sign&ant fraction of objects live for the dura- 

tion of the program in all the test programs [24]. This being 

the case, arguments cl aiming that the cost of copying col- 

lection can be reduced to zero with large enough memories 

are not necessarily valid. 

In particular, my results show that mark-and-sweep col- 

lection has a higher threshold independent cost by approxi- 

mately 10% for memory intensive programs. Copying collec- 

tion has a higher threshold dependent cost, and with large 

thresholds the threshold dependent part is still a significant 

fraction of the total cost. I conclude that contrary to pop- 

ular belief, copying collection does not hold a significant 

performance advantage over mark-and-sweep collection and, 

depending on the threshold size used, can actually have a 

greater CPU overhead. 

5 Memory Costs 

Stack simulation allows me to determine the page fault rate 

for all memory sizes in one pass over the memory reference 

string. Once this data is available, the memory needs of 

an algorithm can be defined as the physical memory size 

required to provide a particular acceptable page fault rate. 

The memory needs of the algorithms are indicated in Fig- 

ure 4, where 20 page faults per second was deemed to be an 

acceptable fault rate. 

The figure shows that mark-and-sweep collection requires 

an average of 20% less physical memory to achieve the same 

page fault rate, and sometimes requires 30-45% less mem- 

ory. There are definite exceptions to this result, especially 

for small threshold sizes. We can understand the excep- 

tions by thinking about the relationship between allocation 

threshold and promotion rate. 

The expected trend for the memory requirement is that 

larger threshold sizes require more memory. This is true 

in general, but there is a competing effect that reduces the 

memory needs as threshold size increases. Collection with 

smaller thresholds promotes more active data to the second 

generation. References to objects promoted to the second 

generation dilute the reference locality of the program and 

increase its memory needs. The smallest thresholds result in 

significantly higher promotion rates (10-24x of all objects 

allocated) when compared with the promotion rates for the 

largest threshold (3-5%). Furthermore, the en-masse pro- 

motion policy used by the mark-and-sweep algorithm, which 

promotes an entire generation, results in almost twice as 

much promotion as the copy count policy used by the stop- 

and-copy algorithm, This increased promotion leads to the 

increased memory needs of mark-and-sweep collection with 

small threshold sizes. 

If moderate threshold sizes are considered (around 500 

kilobytes), the promotion rate is reduced significantly and 

references to newspace determine the memory needs of the 

algorithm. Mark-and-sweep collection, which avoids divid- 

ing newspace into semispaces, shows reduced memory needs. 

6 Related Work 

Many recent papers on copying garbage collection algorithms 

have mentioned mark-and-sweep collection only in passing, 

noting that because the cost is proportional to the size of 

memory, mark-and-sweep collection is less efficient than copy- 

ing collection [16, 2, 201. Appel, Ellis, and Li note that 

the cost of mark-and-sweep collection is probably somewhat 

higher than the cost of copying collection, but concede that 

other costs (allocation, barriers, virtual memory overhead) 

effect performance enough that copying collectors may not 

necessarily be the most effective [I]. I note that the cost of 

sweeping is just an extension of the cost of allocation, and 

quantify that cost to be up to 5% in allocation intensive 

programs. 

Many papers have measured the performance of copying 

algorithms augmented with generations [13, 16, 201. Few, 

however, have described mark-and-sweep algorithms with 

generations. Demers, Weiser and others provide the theory 

for a storage model with generation garbage collection and 

also describe two generation mark-and-sweep algorithms based 

on their model [8]. Their collectors differ from mine in that 

they never relocate objects, even when promoting them. 

Because they are interested in conservative garbage collec- 

tion, they make no effort to compare the performance of 

their mark-and-sweep collector with generation-based copy- 

ing collectors. 

This paper is the first to attempt a controlled compari- 

son of mark-and-sweep and stop-and-copy algorithms in the 

context of generations. This paper also differs from others 

because it quantifies the memory requirements for two very 

different garbage collection algorithms. Stack simulation has 

never been used to determine page fault rates (and indi- 

rectly the memory needed for a particular page fault rate) 

in the evaluation of garbage collection algorithms. Peng and 

Sohi have used stack simulation for studies of garbage col- 

lection cache locality [15], but they do not compare different 

95 



6000 

Lisp Compiler 

.=. 2000 
u 
‘; 
2 

2 1500 

d 

s 
8 1000 
z 

500 

0 

2500 

‘;; 2000 
” 
‘; 
52 

; 1500 

i 

s 
$ 1000 
x 

500 

0 

125 250 500 1000 2000 
GC threshold (kbytes) 

BM Theorem Prover RL 

mark & sweep -+ 

1 1 I I 1 

125 250 500 1000 
GC threshold (kbytes) 

2000 

7000 

6000 

‘g 5000 
‘: 
:: 
T 
f 

4000 

2 
g 3000 

B 
z 

2000 

1000 

0 

Curare 

I I I I I 

stop k eopy -A- 

mark & sweep + 

I I I I II 

125 250 500 1000 2000 
GC threshold (kbytes) 

I I I I 

stop & copy 
mark tc sweep 

I I I I 

125 250 500 1000 2000 
GC threshold (kbytes) 

Figure 4: Memory Needs of Stop-and-Copy and Mark-and-Sweep Collection. The memory size indicated is the size required to 
achieve a page fault rate of twenty page faults per second. 

96 



garbage collection algorithms and do not look at main mem- 

ory locality. 

7 Summary 

This paper has outlined a mark-and-sweep collection algo- 

rithm augmented with generations and compared its per- 

formance using trace-driven simulation with a simple gener- 

ation stop-and-copy algorithm. From the measurements, I 

conclude that mark-and-sweep collection is at worst slightly 

more expensive than stop-and-copy collection (3-6%) but 

that the memory required by the algorithm is often signif- 

icantly smaller than the copying algorithm (20% or more). 

The low overhead of mark-and-sweep collection is achieved 

by using generations to avoid sweeping the entire memory 

and by associating sweeping with allocation. Mark-and- 

sweep collection has better reference locality than stop-and- 

copy collection because it avoids copying objects between 

semispaces. One original reason for copying, to compact the 

reachable objects, is not important in algorithms extended 

with generations because the youngest generation must fit 

entirely in memory for adequate virtual memory perfor- 

mance. Since the whole generation needs to fit, the mark- 

and-sweep algorithm requires less memory because each gen- 

eration is one-half the size of copying algorithm generations. 

These results should encourage future garbage collection irn- 

plementors to once again consider mark-and-sweep collec- 

tion as an effective algorithm. 
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