Announcements

CSCl 334:
Principles of Programming Languages

Thanks!
Lecture 23: Exam Review

Instructor: Dan Barowy
Williams

Announcements Announcements

Exam Study Session:
Monday, May 14 2-4pm H\W/Q solutions after late days
TBL 202

Announcements

If you are missing a grade, let me know!

Announcements

SCS Forms and Blue Sheets
at end of class
(10:50 for S1, 12:15 for S2)

Computability

.e., what can and cannot
be done with a computer

def: a function f is computable if there
IS a program P that computes [,

In other words, for any (valid) input x, the
computation P(x) halts with output f(x).

The Halting Problem

Decide whether program P halts on input x.

Given program P and input x,

print “halts” if P(x) halts
Halt (P, x) = . .
print “does not halt” otherwise

Fun fact: it is provably impossible to write Halt

Higher-Order Functions

l.e., "functions that take functions’

(mapcar #’function list)

Lisp was invented for Al research

ot Interpretation Compilation

foo.c
[] 5
@ =g
)

foo.lisp \

[o]
5
o

ZJ(T,

movEf 1233, fp2
mulf #60.0, fp2
movE $8(sp), fpl
addf fp2, fpl
movE fpl, $12(sp)

- input "

Y
‘N @o} @

Rule

o
LXK >

eval

e

o
B

Q 5 s ou T @ @

° ° o . B :8'6 &

output A. __ Tk

output

JIT-Compilation

foo.java

S v
‘.'.‘ o°@®

z Rule -
Jleval |\

0
D
62

new program
movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fpl
addf fp2, fpl
movf fpl, $12(sp)

Lambda calculus

* Invented by Alonzo Church in
order to solve

the Entscheidungsproblem.

* Short answer to Hilbert's
question: no.

« Proof: No algorithm can decide equivalence of

two arbitrary A-calculus expressions.

Lambda calculus is deceptively simple

» Church-Turing thesis: every computable
function can be represented in the A-
calculus; ie, itis "Turing complete”.

o Grammar in BNF:

M ::= x variable
| Ax.M abstraction

| MM function application

Order does not matter

M1/ | \Mz

IfM—=>M,and M = M,
then M, =" Nand M, =" N
for some N

‘confluence’

ML

- Dana Scott

- Logic of Computable Functions
(LCF)
- Automated proofs!
- Theorem proving is essentially a

‘search problem’”.

-1t is (essentially) NP-Complete
-But works “in practice” with the

right “tactics”

- Robin Milner

- How to program tactics?

- A "meta-language’ is needed
- ML is born

ML

Static vs. dynamic environments

fun add one x = x + 1
Static environment:
Facts about a program that are always true.
E.g. data types.

Other static facts:
+ “always halts’

« fnis named ‘add_one"

Static vs. dynamic environments

fun add one x = x + 1
Dynamic environment:

Facts about a program that are true for a given

invocation of the program.
E.g. values.

Other dynamic facts:

+ "halts for given value

Types

We usually can determine types statically.

Some languages where we do:
Java, Standard ML, Go, Rust, ..

Some languages where we don't:
Python, Ruby, Lisp, R, ..

Nominal Types
Types are equivalent if they use the same

name or if there is an explicit subtype

relationship between names.

Matching names Subtype relationship

int n = 3; class Animal ..

int m = 4; class Cat extends Animal ..

n == m; Animal a = new Animal ()

false Cat ¢ = new Cat();
c.equals(a) == true (Mmaybe)

Structural Types

Types are equivalent if they have the same

features. Base case in ML: same hame;

inductive case: same composition of names.

Matching names Structural relationship
val n = 3 val a = (1, (2,”hi”))
val m = 4 val b = (1, (2,”hi"”))
n =m a =>b

false true

algebraic datatypes and pattern matching
(the chocolate and peanut butter of PL)

datatype treat =
SNICKERS

| TWIX

| TOOTSIE ROLL

| DENTAL FLOSS

fun trick or treat SNICKERS = “treat!”
| trick or treat TWIX = “treat!”
| trick or treat TOOTSIE ROLL = “treat!”
| trick or treat DENTAL FLOSS = “trick!”

type checking

fun f(x:int) : int = “hello ” + x

stdIn:27.12-27.24 Error: operator and operand don't
agree [overload conflict]

operator domain: [+ ty] * [+ ty]
operand: string * int
in expression:

"hello " + x

Hinley-Milner algorithm

Has three main phases:

1. Assign type to each expression and subexpression

2. Generate type constraints based on rules of A calculus:
a. Abstraction constraints
b. Application constraints

3. Solve type constraints using unification.

t

GC example from HW?2

(car (cdr (cons (a b) (

Which objects
are garbage?

™~
E

main x

call stack

+ Argued that GOTO made

- "the quality of programmers is

Structured Programming

- Coined by Edsger Dijkstra
- 'GOTO Statement Considered

Harmful'

programming much harder to

understand.

a decreasing function of the

density of GOTO statements in

the programs they produce’

Structured Programming

Only 3 building blocks for programs.

statement

l tl {fmse

sequence conditional

v

truel l false

loop

Structured Program Theorem: Blocks are Turing-complete

Structured programs can be evaluated
using a call stack

main x

call stack

Call Stack

A call stack is a control structure that stores

information about the active subroutines of a

program.

Most programming language runtimes use a

call stack to evaluate a program instead of

evaluation-by-substitution (i.e., A-calculus

reductions).

Stacks are used to track..

1.which function is being executed now,

2.the parameters to that function,

cons X y

3.the local variables used in that function,

cdr x

4temporary results needed along the way, car x

main x

5.where to return when done,

call stack
6.where to put the result when done,

7.where to find non-local variables (optional)

\What can a function return? First Class Functions
T + A language with first-class functions treats functions no

differently than any other value:

b NATIONAL HOMES'

- You can assign functions to variables:
B s e B ; val f = fn x => x + 1
- : - You can pass functions as arguments:
fun g h = h 3
g f
- You can return functions:

fun k x = fn () => x + 3

JUNITIES SOON .. .
IPER FOR ANNOUNCEMI

- First-class function support complicates

implementation of lexical scope.

Upward funargs Exceptions are dynamically scoped
let val g =
let \;al x =1 - Remember: variable bindings are statically (lexically)
AL =) un £ () = x + 1
g0 oL :\ in f end
| m—fp in g() end Scoped.
x =1 1. Push let block for g onto call . ; i
fo— | stack Wo don'tyet know g's value. Exceptions are dynamically scoped.
AL = 2. Push let block for x and f.
P T\ 3. Return f£.\We have a problem! fun prod (Leaf x) =
4. The fix is delay deallocating record))
until we are done using it. Instead if x = 0 then raise Zero else x
of using stack, just heap allocate
frames and use garbage collector! | prod (Node(x,y)) = prod x * prod y
- Remember that | said raise is like goto?
g = 5. Now we can call g () and it will ,) B R ,
AL = work correctly. - Where would this raise ‘go to"? We haven't even used

heap-allocated records prod yet!

point

Continuations

program

code
code
code
code

—» code

code
code
code
code

code

code

code

code
code

code

code
code

code

f code

code
code

code

code
code
code

code

code
code
code

code

code
code
code

done

Object-oriented programming is composed primarily

of four key language features:

OK, really, what is OO?

1. Abstraction

2. Dynamic dispatch

3. Subtyping

4. Inheritance

- Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

Circle object

Dynamic Dispatch

Circle class

—
—,
centerX
centerY
radius
Method dictionary

new —

Template

centerX

centerY

radius

. o]

superclass or because it just happens to be there.
superclass (Vehicle)

Toyota object

wheels
color

doors

Polymorphism

Toyota class

\

- Dynamic dispatch allows for a kind of polymorphism.

- It does not matter whether a method exists because of a

Template

wheels

color

Method dictionary |:|

doors

OO vs Functional Tradeoff

- OO0 offers a different kind of extensibility than functional
(or function-oriented) languages.

* Suppose you're modeling a hospital.

Operation Doctor Nurse Orderly

Print Print Doctor Print Nurse Print Orderly

Pay Pay Doctor Pay Nurse Pay Orderly

-Functional programming makes it easy to add operations.

- OO0 programming makes it easy to add data.

Subtyping vs. Inheritance

- In terms of code reuse, it makes perfect sense to
implement a Stack and Queue on top a Dequeue.
Dequeue has all the functionality needed.

- (Smalltalk allows one to “uninherit” methods from a
superclass)

- But Stack and Queue are not subtypes of Dequeue!

+ The converse is truel!

Dequeue <: Stack
Dequeue <: Queue

C Features

- user-defined functions (demo)
- explicit memory functions
- manual storage (demo)
+ malloc
- free
- used when memory needs to outlive activation record (example)
- "automatic” storage (demo)
+ "local’ variable; allocated on the stack
- otherwise, allocated on the heap

- automatically “freed” when stack popped

Virtual Dispatch

Person object Person vtable Person code

sayHello
woer [s

n | ..,

» std::string on heap

Pirate object Pirate vtable Pirate code

sayHello
e [T
n ., getDrunk —_—
- [> | getDrunk
is_scalawag true ‘f.,
“a

std::string on heap

- C++ virtual dispatch does never searches as in SmallTalk
vtable/instance variable offsets known at compile-time.

Lambda expressions

- C++ has lambda expressions.
- They are a tad more verbose than in SML.

+ Three main components.

(@] (@) {®)

1. Parameter list
2. Function body

3.Capture list

Templates

- C++ lets you program “generically” just like Java or SML.
- Syntax is a little different.
- Mechanism is very different.
template <typename T>
class Box {

public:

T x;

Box<double> b = new Box<double>();
b->x = 2.2;

Box is not ‘covariant”

What we want:

F <: Fruit

Box[F] <: Box[Fruit]

This is not true in Scala by default

(but the fix is simple)

trait Box[+F <: Fruit] {
def fruit: F
def contains(aFruit: Fruit) = fruit == aFruit

}

val box: Box[Fruit] = new Box[Apple] { def fruit = apple }

Implicit Conversions

Scala gives you precise control of implicit conversions.

Suppose | want to be able to write the following:

scala> l.repeat(10)
and get

resd: List[Int] = List(l, 1, 1, 1, 1, 1, 1, 1, 1, 1)

How would | make this happen?

Declarative Programming

- Declarative programming is a very different style of programming than
you have seen to this point.

- Mostly, you have seen imperative programs.

- In imperative-style programming, the programmer instructs the
computer how to compute the desired result.

- In declarative-style programming, the computer already knows how
to compute results.

- Instead, the programmer asks the computer what to compute.

Prolog

- The goal of Al is to enable a computer to answer declarative queries.
- le, it already knows how to answer you.
- Prolog was an attempt to solve this problem.

+ Since this was early work, the input language was somewhat primitive:

predicate logic.

- As you will see, formulating queries in pure logic is not the easiest

thing to do.

- However, for certain classes of logic, there are known efficient,

deterministic algorithms for solving every possible query.

Proof Search
- Nonetheless, Prolog is not generally sensitive to the order of the facts

in a database. How does this work?

- The answer is that resolution is actually a form of backtracking search.

(true « g,e,c) (true ~ d,e,c)

(true - grtrue true)

P

X

Domain Specific Languages

+ Adomain specific language (DSL) is a language designed to
solve a small set of tasks.

- DSLs frequently sacrifice expressiveness in favor of ease of use.

Completeness

- Aformal system is a logical system for generating formulas.
- Aformal system is complete with respect to a property if all
formulas having that property can be derived using the rules

(axioms) of the system.

Soundness

- Aformal system is sound with respect to a property if all derivable

formulas are true.

Incompleteness Theorem

- Kurt Godel proved that mathematics (i.e.,
mathematical logic) cannot be both sound
and complete wrt “provability”

« Either:

- you can define a formal system in which
you can derive all the true mathematical
statements, but which also admits false
statements (inconsistent), or

- you can define a formal system in which
all statements are true, but in which you
cannot derive all the true mathematical

statements (incomplete).

. hitps.Zvoutube/OandIDeDSGE

SQL

+ SQL is a DSL for querying data, invented by E. F.

Codd in 1970.

- SQL limits itself to only certain kinds of queries.

- All of those queries can be answered efficiently (and

by implication, they terminate).

- The language is based on a theory of data and data

queries called the relational algebra.

+ The relational algebra lets users efficiently query

data in a form that is largely independent of the

organization of the data on disk.

- This was considered a major breakthrough when it

was invented.

- For many practical reasons, SQL has diverged

somewhat from the relational algebra.

Relational Algebra

+ The relational algebra is based on set theory.

- Arelation Ris a set of tuples.

- Remember that sets contain only unique elements.

+ Also, the order of elements in a set does not matter.

- The members of a tuple are called attributes

- Note that the order of attributes in a tuple does not matter.

- e often think of relations as tables. But since relations are really sets

of tuples, the order of attributes and rows in a table does not matter.

+ A schema is the set of all defined relations.

- A database is a collection of instances of relations for a given schema.

Employee

Name Empld DeptName

Harry | 3415
Sally 2241
George | 3401

Harriet | 2202

Finance
Sales
Finance

Sales

Dept
DeptName Manager
Finance George
Sales Harriet

Production | Charles

See the handout for more!

Have a great summer!

