
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 23: Exam Review

Announcements

Thanks!

Announcements

Exam Study Session:  
Monday, May 14 2-4pm

TBL 202

Announcements

HW9 solutions after late days

Announcements

If you are missing a grade, let me know!

Announcements

SCS Forms and Blue Sheets
at end of class

(10:50 for S1, 12:15 for S2)

Computability

i.e., what can and cannot
be done with a computer

def: a function f is computable if there
is a program P that computes f.

In other words, for any (valid) input x, the
computation P(x) halts with output f(x).

The Halting Problem

Decide whether program P halts on input x.

Given program P and input x,

Halt(P,x) = {print “halts” if P(x) halts

print “does not halt” otherwise

Fun fact: it is provably impossible to write Halt

Lisp was invented for AI research

Higher-Order Functions

i.e., “functions that take functions”

(mapcar #’function list)

eval

Interpretation

output

input

foo.lisp

foo.c

comp

Compilation

x86

input

movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

output

eval

JIT-Compilation

x86

output

foo.java

input
movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

new program

Lambda calculus

• Invented by Alonzo Church in 
order to solve 
the Entscheidungsproblem.

• Short answer to Hilbert’s 
question: no.

• Proof: No algorithm can decide equivalence of

two arbitrary λ-calculus expressions.

Lambda calculus is deceptively simple

• Church-Turing thesis: every computable

function can be represented in the λ-

calculus; i.e., it is “Turing complete”.

• Grammar in BNF:

M ::= x

 | λx.M

 | MM

variable

function application

abstraction

Order does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N
for some N

M

M1 M2

N “confluence”

ML

• Dana Scott

• Logic of Computable Functions

(LCF)

•Automated proofs!

•Theorem proving is essentially a

“search problem”.

• It is (essentially) NP-Complete

•But works “in practice” with the

right “tactics”

ML

• Robin Milner

• How to program tactics?

• A “meta-language” is needed

• ML is born

Static vs. dynamic environments

Static environment:

Facts about a program that are always true.

E.g., data types.

Other static facts:

• “always halts”

• fn is named “add_one”

fun add_one x = x + 1

Static vs. dynamic environments

Dynamic environment:

Facts about a program that are true for a given

invocation of the program.

E.g., values.

Other dynamic facts:

• “halts for given value”

fun add_one x = x + 1

Types

We usually can determine types statically.

Some languages where we do:

Java, Standard ML, Go, Rust, …

Some languages where we don’t:

Python, Ruby, Lisp, R, …

Nominal Types
Types are equivalent if they use the same

name or if there is an explicit subtype

relationship between names.

int n = 3;

int m = 4;

n == m;

false

Matching names
class Animal …

class Cat extends Animal …

Animal a = new Animal();

Cat c = new Cat();

c.equals(a) == true (maybe)

Subtype relationship

Structural Types

Types are equivalent if they have the same

features. Base case in ML: same name;

inductive case: same composition of names.

val n = 3

val m = 4

n = m

false

Matching names
val a = (1,(2,”hi”))

val b = (1,(2,”hi”))

a = b

true

Structural relationship

algebraic datatypes and pattern matching
(the chocolate and peanut butter of PL)

fun trick_or_treat SNICKERS = “treat!”
 | trick_or_treat TWIX = “treat!”
 | trick_or_treat TOOTSIE_ROLL = “treat!”
 | trick_or_treat DENTAL_FLOSS = “trick!”

datatype treat =
 SNICKERS
| TWIX
| TOOTSIE_ROLL  
| DENTAL_FLOSS

type checking

fun f(x:int) : int = “hello ” + x

stdIn:27.12-27.24 Error: operator and operand don't
agree [overload conflict]
 operator domain: [+ ty] * [+ ty]
 operand: string * int
 in expression:
 "hello " + x

Hinley-Milner algorithm

1. Assign type to each expression and subexpression

2. Generate type constraints based on rules of λ calculus:

a. Abstraction constraints

b. Application constraints

3. Solve type constraints using unification.

Has three main phases:

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

a b c d

Which objects  
are garbage?

Structured Programming

• Coined by Edsger Dijkstra

• “GOTO Statement Considered

Harmful”

• Argued that GOTO made

programming much harder to

understand.

• “the quality of programmers is

a decreasing function of the

density of GOTO statements in

the programs they produce.”

Structured Programming

Only 3 building blocks for programs.

statement

…

conditional

true false

… … statement

conditional

true false

…

sequence conditional loop

Structured Program Theorem: Blocks are Turing-complete

Structured programs can be evaluated
using a call stack

main x

call stack

car x

cdr x

cons x y

cons x y

Call Stack

A call stack is a control structure that stores

information about the active subroutines of a

program.

Most programming language runtimes use a

call stack to evaluate a program instead of

evaluation-by-substitution (i.e., λ-calculus

reductions).

Stacks are used to track…

1.which function is being executed now,

2.the parameters to that function,

3.the local variables used in that function,

4.temporary results needed along the way,

5.where to return when done,

6.where to put the result when done,

7.where to find non-local variables (optional)

main x

call stack

car x

cdr x

cons x y

cons x y

What can a function return? First Class Functions
• A language with first-class functions treats functions no

differently than any other value:

• You can assign functions to variables: 
val f = fn x => x + 1

• You can pass functions as arguments: 
fun g h = h 3  
g f

• You can return functions: 
fun k x = fn () => x + 3

• First-class function support complicates

implementation of lexical scope.

Upward funargs

heap-allocated records

g =
AL = …

let val g =
 let val x = 1

 fun f () = x + 1
in f end
in g() end

1. Push let block for g onto call
stack. We don’t yet know g’s value.

2. Push let block for x and f.
3. Return f. We have a problem!
4. The fix is delay deallocating record

until we are done using it. Instead
of using stack, just heap allocate
frames and use garbage collector! 
 
 

5. Now we can call g() and it will
work correctly.

f

x = 1
f =
AL =
CL =

AL =
CL =g()

Exceptions are dynamically scoped

• Remember: variable bindings are statically (lexically)

scoped.

• Exceptions are dynamically scoped.

fun prod (Leaf x) =

 if x = 0 then raise Zero else x  
 | prod (Node(x,y)) = prod x * prod y

• Remember that I said raise is like goto?

• Where would this raise “go to”? We haven’t even used

prod yet!

Continuations

code code code

code code code

code code code code

code code code code

code code code codepoint

program

code code code code

code code code code

code code code code

code code code done

f()

f:

OK, really, what is OO?

Object-oriented programming is composed primarily

of four key language features:

1. Abstraction

2. Dynamic dispatch

3. Subtyping

4. Inheritance

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

centerX

centerY

radius

Circle object Circle class Template

centerX

centerY

radius

Method dictionary
new

…

code

Polymorphism
• Dynamic dispatch allows for a kind of polymorphism.

• It does not matter whether a method exists because of a

superclass or because it just happens to be there.

wheels

color

doors

Toyota object Toyota class Template

wheels

color

doors

Method dictionary …

superclass (Vehicle)

… …

OO vs Functional Tradeoff

• OO offers a different kind of extensibility than functional

(or function-oriented) languages.

• Suppose you’re modeling a hospital.

Operation Doctor Nurse Orderly

Print

Pay

Print Doctor Print Nurse Print Orderly

Pay Doctor Pay Nurse Pay Orderly

•Functional programming makes it easy to add operations.

•OO programming makes it easy to add data.

Subtyping vs. Inheritance

• In terms of code reuse, it makes perfect sense to

implement a Stack and Queue on top a Dequeue.

Dequeue has all the functionality needed.

• (Smalltalk allows one to “uninherit” methods from a

superclass)

• But Stack and Queue are not subtypes of Dequeue!

• The converse is true!

Dequeue <: Stack
Dequeue <: Queue

C Features

• user-defined functions (demo)

• explicit memory functions

• manual storage (demo)

• malloc

• free

• used when memory needs to outlive activation record (example)

• “automatic” storage (demo)

• “local” variable; allocated on the stack

• otherwise, allocated on the heap

• automatically “freed” when stack popped

Virtual Dispatch
Person object

vptr

n

Person vtable

std::string on heap

Pirate object Pirate vtable Pirate code

sayHello

std::string on heap

vptr

n

is_scalawag true

sayHello

sayHello

getDrunk
getDrunk

• C++ virtual dispatch does never searches as in SmallTalk;
vtable/instance variable offsets known at compile-time.

Person code

sayHello

Lambda expressions

[](){ }

• C++ has lambda expressions.

• They are a tad more verbose than in SML.

• Three main components.

1 23

1. Parameter list

2. Function body

3.Capture list

Templates

• C++ lets you program “generically” just like Java or SML.

• Syntax is a little different.

• Mechanism is very different.

class Box {

public:

}

…

template <typename T>

T x;

Box<double> b = new Box<double>();

b->x = 2.2;

Box is not “covariant”

F <: Fruit

What we want:

This is not true in Scala by default

(but the fix is simple)

Box[F] <: Box[Fruit]

trait Box[+F <: Fruit] {
 def fruit: F
 def contains(aFruit: Fruit) = fruit == aFruit
}

val box: Box[Fruit] = new Box[Apple] { def fruit = apple }

Implicit Conversions

Scala gives you precise control of implicit conversions.

Suppose I want to be able to write the following:

scala> 1.repeat(10)

and get

res4: List[Int] = List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

How would I make this happen?

Declarative Programming

• Declarative programming is a very different style of programming than

you have seen to this point.

• Mostly, you have seen imperative programs.

• In imperative-style programming, the programmer instructs the

computer how to compute the desired result.

• In declarative-style programming, the computer already knows how

to compute results.

• Instead, the programmer asks the computer what to compute.

Prolog

• The goal of AI is to enable a computer to answer declarative queries.

• I.e., it already knows how to answer you.

• Prolog was an attempt to solve this problem.

• Since this was early work, the input language was somewhat primitive:

predicate logic.

• As you will see, formulating queries in pure logic is not the easiest

thing to do.

• However, for certain classes of logic, there are known efficient,

deterministic algorithms for solving every possible query.

Proof Search
• Nonetheless, Prolog is not generally sensitive to the order of the facts

in a database. How does this work?

• The answer is that resolution is actually a form of backtracking search.

true ← a

true ← b,c

true ← g,e,c true ← d,e,c

true ← g,true,e

true ← g,true,true true ← true

Domain Specific Languages

• A domain specific language (DSL) is a language designed to

solve a small set of tasks.

• DSLs frequently sacrifice expressiveness in favor of ease of use.

Completeness

• A formal system is a logical system for generating formulas.

• A formal system is complete with respect to a property if all

formulas having that property can be derived using the rules

(axioms) of the system.

Soundness

• A formal system is sound with respect to a property if all derivable

formulas are true.

Incompleteness Theorem
• Kurt Gödel proved that mathematics (i.e.,

mathematical logic) cannot be both sound

and complete wrt “provability.”

• Either:

• you can define a formal system in which

you can derive all the true mathematical

statements, but which also admits false

statements (inconsistent), or

• you can define a formal system in which

all statements are true, but in which you

cannot derive all the true mathematical

statements (incomplete).

• https://youtu.be/O4ndIDcDSGc

SQL
• SQL is a DSL for querying data, invented by E. F.

Codd in 1970.

• SQL limits itself to only certain kinds of queries.

• All of those queries can be answered efficiently (and

by implication, they terminate).

• The language is based on a theory of data and data

queries called the relational algebra.

• The relational algebra lets users efficiently query

data in a form that is largely independent of the

organization of the data on disk.

• This was considered a major breakthrough when it

was invented.

• For many practical reasons, SQL has diverged

somewhat from the relational algebra.

Relational Algebra
• The relational algebra is based on set theory.

• A relation R is a set of tuples.

• Remember that sets contain only unique elements.

• Also, the order of elements in a set does not matter.

• The members of a tuple are called attributes.

• Note that the order of attributes in a tuple does not matter.

• We often think of relations as tables. But since relations are really sets

of tuples, the order of attributes and rows in a table does not matter.

• A schema is the set of all defined relations.

• A database is a collection of instances of relations for a given schema.

See the handout for more!

Have a great summer!

