
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 21: Logic Programming

Announcements

Be a TA!

Announcements Logic Programming

• Logic programming began as a collaboration between AI researchers

(e.g., John McCarthy) and logicians (e.g., John Alan Robinson) to solve

problems in artificial intelligence.

• Cordell Green built the first “question and answer” system using

Robinson’s “unification algorithm,” demonstrating that it was practical to

prove theorems automatically.

Prolog

• Alain Colmerauer and Phillippe Roussel at Aix-

Marseille University invented Prolog in 1972.

• They were inspired by a particular formulation of

logic, called “Horn clauses,” popularized by the

logician Robert Kowalski.

• Horn clauses have a “procedural interpretation,”

meaning that they suggest a simple procedure for

solving them, called “resolution.”

• John Alan Robinson’s unification algorithm is an

efficient algorithm for doing resolution, and this is

essentially the algorithm used by Prolog.

Declarative Programming

• Declarative programming is a very different style of programming than

you have seen to this point.

• Mostly, you have seen imperative programs.

• In imperative-style programming, the programmer instructs the

computer how to compute the desired result.

• In declarative-style programming, the computer already knows how

to compute results.

• Instead, the programmer asks the computer what to compute.

Declarative Programming

• Most of you have probably been CS majors for long enough that we

have sufficiently damaged your brain such that you do not recognize

the difference between these two concepts.

• In fact, imperative-style programming is a very unnatural way of

communicating desires.

• Declarative: “Make me a PB&J sandwich.”

• Imperative: https://youtu.be/cDA3_5982h8

Prolog

• The goal of AI is to enable a computer to answer declarative queries.

• I.e., it already knows how to answer you.

• Prolog was an attempt to solve this problem.

• Since this was early work, the input language was somewhat primitive:

predicate logic.

• As you will see, formulating queries in pure logic is not the easiest

thing to do.

• However, for certain classes of logic, there are known efficient,

deterministic algorithms for solving every possible query.

Horn Clause

• Horn clauses are composed of two simple pieces:

• facts

• rules (clauses)

• Rules are composed of facts

• Complex facts may also be composed using conjunction.

• We will explore these concepts using Prolog syntax.

• Note that Horn clauses can be “satisfied” in polynomial time.

• In fact, Horn logic is the most expressive form of logic

known to be satisfiable in polynomial time.

Facts (Prolog syntax)

raining.

cloudy.

thursday.

• Here are some facts:

• Facts are assumed to be true.

• Facts of this form are sometimes called “atoms”, since they are indivisible.

• The meaning of these facts is up to the programmer.

• Facts can also be compound:

raining,cloudy.

cloudy,thursday.

• “,” denotes “logical and”.

• Note that, in Prolog, facts are always lowercase and must begin

with a letter.

Rules (Prolog syntax)

sleep_deprived :- thursday.

unhappy :- raining,cloudy.

• Here are some rules:

• The interpretation of a rule X :- Y is: 

if Y is true, then X is true

• In other words, Y is the antecedent and X is the consequent.

• So, we might interpret the above as:  

“students are sleep deprived if it is Thursday”  
“I am unhappy if it is raining and cloudy.”

Variables (Prolog syntax)

X :- Y

• Note that I just used a generalization of rules 
without definition:

• Prolog explicitly allows generalizations of facts like this.

• We call these generalizations “variables”, because their  

precise values (i.e., facts) may not be known to us.

• In the “execution” of a Prolog program, we seek to “instantiate” 

variables with facts.

• In Prolog, variables are always written starting with an uppercase letter.

• We will come back to variables shortly.

Complex facts (Prolog syntax)

musician(mia).

musician(john).

friends_with(mia,john).

• Prolog allows one additional form:

• Statements of this form are called “complex facts.”

• Again, the interpretation is up to you.

• E.g., 

“Mia is a musician.” 

“John is a musician.” 
“Mia is friends with John.”

• Note that we do not automatically assume that  
“John is friends with Mia”!

Queries

raining.

cloudy.

thursday.

sleep_deprived :- thursday.

unhappy :- raining,cloudy.

• Taken together, facts and rules form a “knowledge base.”

• A query asks the knowledge base a question. E.g.,  
?- sleep_deprived.  
true  
?- unhappy.  
true

Resolution

raining.

cloudy.

thursday.

sleep_deprived :- thursday.

unhappy :- raining,cloudy.

• “Resolution” is the name of the procedure that Prolog uses to  

“satisfy” a query.

• Essentially, we seek to reduce a query expression to the expression

true by substitution.

• Remember that facts are assumed to be true.

Resolution
1. raining.

2. cloudy.

3. thursday.

4. sleep_deprived :- thursday.

5. unhappy :- raining,cloudy.

?- sleep_deprived.

• For a given query, we first seek either a fact that immediately

makes the query true, or we seek a rule whose consequent is the

query.

• When a rule is reduced to the form X :- true, then X is true.

6. sleep_deprived :- thursday (by KB4)

7. sleep_deprived :- true (by KB3)

8. true (by deduction)

Resolution

1. a :- b,c.

2. b :- d,e.

3. b :- g,e.

4. c :- e.

5. d.

6. e.

7. f :- a,g.

?- a.

• let’s try to satisfy the following query using resolution:

• Given the following knowledge base,

Resolution

1. a :- b,c.

2. b :- g,e.

3. b :- d,e.

4. c :- e.

5. d.

6. e.

7. f :- a,g.

?- a.

• Again, let’s try to satisfy the following query using resolution:

• Note that we get a slightly different outcome if the same set of

facts are written in a slightly different order:

Proof Search
• Nonetheless, Prolog is not generally sensitive to the order of the facts

in a database. How does this work?

• The answer is that resolution is actually a form of backtracking search.

true ← a

true ← b,c

true ← g,e,c true ← d,e,c

true ← g,true,e

true ← g,true,true true ← true

Resolution with Variables

1. musician(mia).

2. musician(john).

3. friends_with(X,Y) :- musician(X),musician(Y).

?- friends_with(mia,john).

• Let’s resolve the following query:

• Resolution with variables can be very computationally expensive.

• Unification allows resolution with variables to be completed in

polynomial time.

• The basic insight is to “instantiate” variables “on demand” instead of

enumerating all possible variable instantiations into facts.

• Hindley-Milner is essentially just unification.

Resolution with Variables

?- friends_with(mia,Who).

• We may even ask:

• When asking a query that utilizes variables, Prolog will both search

for a satisfying assignment and it will return that assignment.

• There may be more than one possible assignment.

• If so, use the “;” command to ask for another solution.

• Let’s resolve the following query:

?- friends_with(Who1,Who2).

Exercise

• Construct the a knowledge base containing the following facts:

• “Giants eat people.”

• “Giants eat bunnies.”

• “Bunnies eat grass.”

• “People eat bunnies.”

• “People eat people.”

• “Those who are eaten by others hate those others.”

• “Monsters love those who hate themselves.”

• Then supply a query that can answer:

• “Who do monsters love?”

