
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 19: C++

Announcements

HW8 pro tip: the HW7 solutions have a complete,

correct implementation of the CPS version of bubble

sort in SML. All you need to do is encode the same

logic in C++.

Announcements

I’ve decided to skip Java.

Dynamic Dispatch (ala Smalltalk)

Point object Point class Template

Superclass

Method dictionary

…

newX:Y:

move

x

y2

3 Code

ColoredPoint object ColoredPoint class

Template

Method dictionary

color

newX:Y:

foo

Code

2

3

purple

x

y

color

Call move on ColoredPoint

Point object Point class Template

Superclass

Method dictionary

…

newX:Y:

move

x

y2

3 Code

ColoredPoint object ColoredPoint class

Template

Method dictionary

color

newX:Y:

foo

Code

2

3

purple

x

y

color

1 2

3

4

5

6

Optimize Dynamic Dispatch

Point object Point class

Superclass

Method dictionary

Template

x

y2

3 Code

newX:Y:

move

…

• Static types let us do some optimization.

• Sacrificing runtime polymorphism-by-default also allows optimization.

• Statically determine locations of x and y.

• Non-virtual method lookup determined statically.

• Copy virtual methods from superclasses into method dictionary.

• Eliminate class object; just a “virtual function table” now.

Point vtable

Optimize Dynamic Dispatch

Point object

x

y

2

3

Code

move

…

Point vtable

CodeColoredPoint object

x

y

2

3

move

…

ColoredPoint vtable

purple color

color

foo

Point object

x

y

2

3

Code

move

…

Point vtable

CodeColoredPoint object

x

y

2

3

move

…

ColoredPoint vtable

purple color

color

foo

Call move on ColoredPoint

1 2

3

C++ virtual dispatch never searches as in SmallTalk!

Runtime polymorphism
• You may have forgotten how OO polymorphism works.

• It’s easy to forget with Smalltalk, which is dynamically typed.

• In Java—and especially C++—you need to think about this or it
will bite you.

Animal *a = new Animal();
cout << a->myName() << endl;

Human *h = new Human();
cout << h->myName() << endl;

a = h;
cout << a->myName() << endl;

• What will the last line print?

class Animal {
public:
 string myName() {
 return "Animal";
 }
};

class Human : public Animal {
public:
 string myName() {
 return "Human";
 }
};

Runtime polymorphism
• You may have forgotten how OO polymorphism works.

• It’s easy to forget with Smalltalk, which is dynamically typed.

• In Java—and especially C++—you need to think about this or it
will bite you.
class Animal {
public:
 virtual string myName() {
 return "Animal";
 }
};

class Human : public Animal {
public:
 virtual string myName() {
 return "Human";
 }
};

Animal *a = new Animal();
cout << a->myName() << endl;

Human *h = new Human();
cout << h->myName() << endl;

a = h;
cout << a->myName() << endl;

• What will the last line print?

Inheritance vs Subtyping

• Recall that inheritance and subtyping are not the same.

• Example: implement a stack using a dequeue.

• Inheritance of the form: 
 class <subclass> : <superclass>  
is mere inheritance; the C++ compiler will not treat <subclass>
as a subtype of <superclass>

• Inheritance of the form: 
 class <subclass> : public <superclass>  
is inheritance with subtyping; the compiler will treat
<subclass> as an instance of <superclass> when needed.

class Pirate : public Person {
public:
 Pirate(string name);
 virtual void sayHello();
}

Initializer Lists

• In C++, the base class constructor is called automatically for you
for no-argument constructors.

• When calling a superclass constructor with an argument from a
subclass, you must use initializer list syntax. This is different from
Java.

• You can (and should) also use the initializer list to call
constructors for instance variables if they need initialization.

• Initializer lists only work for instance variables that have
constructors; primitives do not have constructors.

• For primitives, initialize the old-fashioned way (in constructor
body).

Pirate::Pirate(name) : Person(name) {}

Manual Memory Management

• In C++, you need to think explicitly about allocation and

deallocation, just as you do in C.

• While you can use malloc and free in C++, you should

generally favor new and delete instead.

• new does more than malloc: it also calls the class constructor.

• delete does more than free: it also calls the class destructor.

Destructors
class String
{
private:
 char *s;
 int size;
public:
 String(char *);
 ~String();
};

String::String(char *c)
{
 size = strlen(c);
 s = new char[size+1];
 strcpy(s,c);
}

String::~String()
{
 delete []s;
}

constructor

destructor

Automatic vs. Heap Allocation

int main() {
 Pirate dan = Pirate(“Dan”);
 dan.sayHello();

 Pirate *karen = new Pirate(“Karen”);
 karen->sayHello();
}

allocated on the stack!

access member using “.”

allocated on the heap

access member using “->”

(remember, this is syntactic
sugar)

Type Inference!

int main() {
 auto dan = Pirate(“Dan”);
 dan.sayHello();

 auto karen = new Pirate(“Karen”);
 karen->sayHello();
}

• auto makes life wonderful. Use it unless you are confused

about inferred types (in which case, write the type manually)

• C++ has a restricted form of type inference.

Lambda expressions

[](){ }

• C++ has lambda expressions.

• They are a tad more verbose than in SML.

• Three main components.

1 23

1. Parameter list

2. Function body

3.Capture list

Lambda expressions

[](){ }1 23

Let’s rewrite this SML lambda expression in C++:

fn (x: int) => x + 1

[](){ };int x return x + 1;

Lambda expressions

[](){ }1 23

Let’s rewrite this SML lambda expression in C++:

val y = 2
fn (x: int) => x + y

[](){ };int x return x + y; y
int y = 2;

Captures y “by value” (copies value of y)

Lambda expressions

[](){ }1 23

Let’s rewrite this SML lambda expression in C++:

val y = 2
fn (x: int) => x + y

[](){ };int x return x + y;
Captures y “by reference” (refers to y)

 y
int y = 2;
&

Lambda expressions

What is the type of a lambda expression?

[&y](int x){return x + y;};

This one takes an int and returns and int

std::function<int(int)>

More generally..

std::function<T(U1,…,Un)>

Lambda subtleties

Capture of closed-over lambda parameters is only

necessary for variables with “automatic storage

duration”.

(demo)

Templates

class Box {

public:

 int x;

}
…

Box b = new Box();

b->x = 2;

• C++ lets you program “generically” just like Java or SML.

• Syntax is a little different.

• Mechanism is very different.

Templates

• No restriction on template parameter like Java (int vs Integer)

• Works by generating specialized code (literally, a new class) at

compile-time for each parameter type used.

class Box {

public:

}
…

template <typename T>

T x;

Box<double> b = new Box<double>();

b->x = 2.2;

Templated Lambdas

template <typename T>
auto Identity = [](T x){return x;};

• You can even template lambda expressions.

• Here’s a generic identity function.

Identity<string>(“hello”);

• Call it like:

Typedef’d Templates

std::function<bool(T,T)>

• You can even typedef templated types.

• Unfortunately, the typedef mechanism does not understand

template parameters, which means that you have to fix the

template parameter if you use it.

• C++0x introduced a generalization of typedef to address this

called using.

template <typename T>

typedef Comparison std::function<bool(T,T)>;

• Won’t work; doesn’t understand T:

template <typename T>

using Comparison = std::function<bool(T,T)>;

• Will work:

Next class

• Scala wrap-up

• Logic programming

