
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 18: C/C++

Announcements

Homework help session will be tomorrow from 7-9pm

in Schow 030A instead of on Thursday.

Announcements

HW6 and HW7 solutions

Announcements

We only have three weeks of class left!

Start thinking about the final exam now.

I am still happy to meet privately with anyone who

wants to review their midterm with me.

C Features

• no memory abstraction

• pointers

• a pointer is not a data type; it’s just an int!

• operations

• “address of” operator: &

• takes any variable and returns its memory address (i.e., pointer)

• “dereference” operator: *

• takes any pointer and returns the value at that memory address

• “member selection” operator: .

• “pointer member selection” operator: ->

• p->foo equivalent to (*p).foo

C Features

• Separate compilation

• C does not have a “module system”

• How does C find printf below?

#include <stdio.h>

int main(int argc, char** argv) {
 printf("Hello world!\n");
}

• statements of the form #<command> are preprocessor directives

• The C preprocessor is a programmable copy and paste tool

C Features

#include <stdio.h>

int main(int argc, char** argv) {
 printf("Hello world!\n");
}

$ clang -E helloworld.c > helloworld_pre.c

… support code …

• (demo)

C Features

Typedef (demo)

Activity

Write a swap() function with the following function header:

void swap(int *p1, int *p2);

Use this function to swap the values of two integers.

int main(int argc, char **argv){
 int x = 10;
 int y = 20;

 swap(/* what do I put here? */);

 printf("x: %d, y: %d\n", x, y);
}

Activity

Create a function print_addr(int x) whose sole purpose is to
print the address of the integer x passed to it.

 
Create an integer variable in main, print out its address, and then
pass that variable to print_addr.

 
Any observations about the behavior of this function?

C++

History of C++
• Began originally in 1979 with Bjarne

Stroustrup’s “C with Classes”

• C++ released in 1983 with most of the
major features we know today.

• Design was strongly influenced by
Simula, but Simula was too slow.
Stroustrup wanted a fast, portable,
language with object-oriented
features. C had everything but OO.

• C++ is largely a superset of C. Until C+
+98, every C program was a valid C++
program. Still relatively easy to convert
C to C++.

• Major driving philosophy: “only pay for
what you use.”

• C++ has many features. We will cover
only the essential ones here.

How to use C++

#include <iostream>
using namespace std;

int main() {
 cout << "Hello world!" << std::endl;
 return 0;
}

• compile code:

$ clang++ helloworld.cpp -o helloworld

• run program:

$./helloworld

• I strongly suggest that you explicitly specify a recent C++ standard:

$ clang++ -std=c++14 helloworld.cpp -o helloworld

• in file helloworld.cpp:

C++ Classes
• C++ classes are similar in spirit to Java classes:

class Person {
private:
 string n;
public:
 Person(string name);
 void sayHello();
};

Person::Person(string name) : a(name) {}

void Person::sayHello() {
 cout << "Hello " << n << "!" << endl;
}

• Note that in C++, we conventionally put member function definitions
after the class declaration. Purpose: separate compilation.

• Also note that C++ has a convenient string type that is much easier
and safer to use than C-style strings (null-terminated char arrays).

• This is called a scope
qualifier. Without it, the
compiler would not know
that Person is the
constructor for the Person
class under separate
compilation.

class Pirate : public Person {
public:
 Pirate(string name);
 virtual void sayHello();
}

Pirate::Pirate(name) : Person(name) {}

void Pirate::sayHello() {
 cout << “Arr “ << n << “!” <, endl;
}

C++ Classes
• As in Java, C++ classes can also inherit from a superclass.

class Person {
protected:
 string n;
public:
 Person(string name);
 virtual void sayHello();
};

…

• We changed this to
protected. Why?

• We added the virtual
keyword. Why?

• Person is a public
superclass. What does
this mean?

• We used weird
constructor syntax here.
Whaaaaaa?!!

• Class definitions end with
a semicolon (ouch!)

Inheritance and Visibility Rules
• As in Java, C++ classes can also inherit from a superclass.

class Person {
protected:
 string n;
public:
 Person(string name);
 virtual void sayHello();
};

• public: instance variable or member function is visible to
both inheriting classes and users of class.

• protected: instance variable or member function is visible
to inheriting class but not users of class.

• private: instance variable or member function is not visible
to either inheriting class or users of class.

Virtual Dispatch
• In C++, you “only pay for what you use.”

class Person {
protected:
 string n;
public:
 Person(string name);
 virtual void sayHello();
};

• Dynamic dispatch is “expensive” compared to static dispatch
(two pointer dereferences and jump vs. direct jump)

• Therefore, the default is static dispatch; dynamic dispatch
needs to be requested using the virtual keyword.

• This is often counterintuitive for Java programmers where
dynamic dispatch is the default (as in Smalltalk).

Virtual Dispatch
Person object

vptr

n

Person vtable

std::string on heap

Pirate object Pirate vtable Pirate code

sayHello

std::string on heap

vptr

n

is_scalawag true

sayHello

sayHello

getDrunk
getDrunk

• C++ virtual dispatch does never searches as in SmallTalk;
vtable/instance variable offsets known at compile-time.

Person code

sayHello

Next Class

• Templates

• Overloading

• Multiple inheritance

• Casting (eeew!)

• C++ lambdas

• Java!

