
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 17: C

Announcements

HW8 via email later today

C

LISP

Why am I talking about C now?

“the good” “the bad” “the ugly”

C C++

C

• Invented by Dennis Ritchie (seated) and Ken Thompson in 1969

• Intended to allow both efficient and portable code.

• As a result, most operating systems are written in C.

C

• C is efficient because of key design choices:

• every feature in the language maps either directly to a machine

instruction or via a small handful of machine instructions

• C does not abstract memory: allocating and cleaning up

memory is the programmer’s responsibility

• C has almost no “run-time” support.

What’s a run-time?

• A language’s run-time is responsible for any behavior of a

program not directly attributable to the program itself.

helloworld.c

Program startup

Program shutdown

Run-time services
Your program

as written

Your program

as compiled}
What’s a run-time?

The C run-time does

• startup

• invoke the dynamic library loader (for DLLs)

• initialize the call stack

• map OS resources to program symbols (e.g., STDIN, STDOUT,

STDERR, etc.)

• call _init, main()

• do as little as possible while program runs

• memory allocator

• debug functions like assert

• (optional) concurrency primitives

• shutdown

• call atexit

What’s a run-time?

The Java run-time does

• startup

• everything that C does

• initialize virtual machine

• shutdown

• everything C does

• run class finalizer code to clean up resources

• shut down virtual machine

and…

What’s a run-time?

The Java run-time does

• do lots of things while program runs

• bytecode verification

• dynamic class loading / initialization

• dynamic type checking

• automatic memory management: allocation & garbage collection

• managing Java threads and thread pools

• exceptions

• program profiling, JIT compilation, and on-stack replacement

• optional isolation

How to use C

#include <stdio.h>

int main(int argc, char** argv) {
 printf("Hello world!\n”);
 return 0;
}

• compile code:

$ clang helloworld.c -o helloworld

• run program

$./helloworld

• in file helloworld.c:

C Features

• Influenced by ALGOL, but simpler

• control: if/else, for, while, switch

• data types:

• primitives: byte (8 bits), char (8 bits), short (16 bits), int (32 bits),

long (64 bits), float (32 bits), double (64 bits)

• complex: array, struct (demo), union

C Features

• user-defined functions (demo)

• explicit memory functions

• manual storage (demo)

• malloc

• free

• used when memory needs to outlive activation record (example)

• “automatic” storage (demo)

• “local” variable; allocated on the stack

• otherwise, allocated on the heap

• automatically “freed” when stack popped

C Features

• no memory abstraction

• pointers

• a pointer is not a data type; it’s just an int!

• operations

• “address of” operator: &

• takes any variable and returns its memory address (i.e., pointer)

• “dereference” operator: *

• takes any pointer and returns the value at that memory address

• “member selection” operator: .

• “pointer member selection” operator: ->

• p->foo equivalent to (*p).foo

